Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Synthesis and Structure of Dinuclear Cationic Aluminum Complexes

Xinbgao Wang, Vincent Dorcet, Yi Luo, Jean-Francois Carpentier and Evgueni Kirillov

Figure S1. ¹H NMR spectrum of $[2a]^+$ [MeB(C₆F₅)₃]⁻. Figure S2. ¹H NMR spectrum of $[2a]^+[MeB(C_6F_5)_3]^-$. Figure S3. ¹³C{¹H} NMR spectrum of $[2a]^+[MeB(C_6F_5)_3]^-$. Figure S4. ¹⁹F $\{^{1}H\}$ NMR spectrum of [2a]⁺[MeB(C₆F₅)₃]⁻. Figure S5. ¹¹B{¹H} NMR spectrum of $[2a]^+[MeB(C_6F_5)_3]^-$. Figure S6. Variable-temperature ¹H NMR spectrum of $[2a]^+[MeB(C_6F_5)_3]^-$. Figure S7. ¹H NMR spectrum of $[2b]^+[MeB(C_6F_5)_3]^-$. Figure S8. ${}^{13}C{}^{1}H{}$ NMR spectrum of $[2b]^{+}[MeB(C_{6}F_{5})_{3}]^{-}$. Figure S9. ${}^{19}F{}^{1}H{}$ NMR spectrum of $[2b]^{+}[MeB(C_6F_5)_3]^{-}$. Figure S10. ¹¹B 1 H 1 NMR spectrum of [2b] $^{+}$ [MeB(C₆F₅)₃] $^{-}$. Figure S11. ¹H NMR spectrum of $[3a \cdot (OEt_2)_2]^{2+}[MeB(C_6F_5)_3]^{-}[H_2N\{B(C_6F_5)_3\}_2]^{-}$. Figure S12. ¹³C{¹H} NMR spectrum of $[3a \cdot (OEt_2)_2]^{2+}[MeB(C_6F_5)_3]^{-}[H_2N\{B(C_6F_5)_3\}_2]^{-}$. Figure S13. ¹⁹F{¹H} NMR spectrum of $[3a \cdot (OEt_2)_2]^{2+}[MeB(C_6F_5)_3]^{-}[H_2N\{B(C_6F_5)_3\}_2]^{-}$. Figure S14. ¹¹B{¹H} NMR spectrum of $[3a \cdot (OEt_2)_2]^{2+}[MeB(C_6F_5)_3]^{-}[H_2N\{B(C_6F_5)_3\}_2]^{-}$. Figure S15. ¹H NMR spectrum of $[3b \cdot (OEt_2)_2]^{2+}[MeB(C_6F_5)_3]^{-}[H_2N\{B(C_6F_5)_3\}_2]^{-}...$ Figure S16. ¹³C{¹H} NMR spectrum of $[3b \cdot (OEt_2)_2]^{2+}[MeB(C_6F_5)_3]^{-}[H_2N\{B(C_6F_5)_3\}_2]^{-}...$ Figure S17. ¹⁹F{¹H} NMR spectrum of $[3b \cdot (OEt_2)_2]^{2+}[MeB(C_6F_5)_3]^{-}[H_2N\{B(C_6F_5)_3\}_2]^{-}...$ Figure S18. ¹¹B{¹H} NMR spectrum of $[3b \cdot (OEt_2)_2]^{2+}[MeB(C_6F_5)_3]^-[H_2N\{B(C_6F_5)_3\}_2]^-$. Figure S19. ¹H NMR spectrum of $[3a \cdot (OEt_2)_2]^{2+}[H_2N\{B(C_6F_5)_3\}_2]^{-2}$. Figure S20. ¹³C{¹H} NMR spectrum of $[3a \cdot (OEt_2)_2]^{2+}[H_2N\{B(C_6F_5)_3\}_2]^{-2}$. Figure S21. ¹⁹F ^{1}H NMR spectrum of $[3a \cdot (OEt_2)_2]^{2+}[H_2N\{B(C_6F_5)_3\}_2]^{-2}$. Figure S22. ¹¹B{¹H} NMR spectrum of $[3a \cdot (OEt_2)_2]^{2+}[H_2N\{B(C_6F_5)_3\}_2]^{-2}$. Figure S23. ¹H NMR spectrum of $[3b \cdot (OEt_2)_2]^{2+}[H_2N\{B(C_6F_5)_3\}_2]^{-2}$. Figure S24. ¹³C{¹H} NMR spectrum of $[3b \cdot (OEt_2)_2]^{2+}[H_2N\{B(C_6F_5)_3\}_2]^{-2}$. Figure S25. ¹⁹F{¹H} NMR spectrum of $[3b \cdot (OEt_2)_2]^{2+}[H_2N\{B(C_6F_5)_3\}_2]^{-2}$. Figure S26. ¹¹B{¹H} NMR spectrum of $[3b \cdot (OEt_2)_2]^{2+}[H_2N\{B(C_6F_5)_3\}_2]^{-2}$. Table S1. Summary of Crystal and Refinement Data for Complexes 4a and $[3b \cdot (OEt_2)_2]^{2+} [H_2N\{B(C_6F_5)_3\}_2]^{-2}$.

Figure S3. ¹³C{¹H} NMR spectrum (100 MHz, CD_2Cl_2 , 298 K) of [2a]⁺[MeB(C₆F₅)₃]⁻.

Figure S6. Variable-temperature ¹H NMR spectrum (400 MHz, C₂D₂Cl₄) of [2a]⁺[MeB(C₆F₅)₃]⁻.

M1-EKXB-100-5.1.fid H1

Figure S13. ¹⁹F{¹H} NMR spectrum (376 MHz, CD₂Cl₂, 298 K) of $[3a \cdot (OEt_2)_2]^{2+}[(Me)B(C_6F_5)_3]^{-}[H_2N\{B(C_6F_5)_3\}_2]^{-}$.

Figure S18. ¹¹B{¹H} NMR spectrum (128 MHz, CD₂Cl₂, 298 K) of [3b·(OEt₂)₂]²⁺[(Me)B(C₆F₅)₃]⁻[H₂N{B(C₆F₅)₃]₂]⁻.

Figure S24. ¹³C{¹H} NMR spectrum (125 MHz, CD₂Cl₂, 298 K) of $[3b \cdot (OEt_2)_2]^{2+}[H_2N\{B(C_6F_5)_3\}_2]^{-2}$.

	4a	$[3b \cdot (OEt_2)_2]^{2+} [H_2N\{B(C_6F_5)_3\}_2]^{-2}$
Empirical formula	$C_{39}H_{48}AlF_5N_2O_2$	$C_{81.33}H_{60}Al_{1.33}B_{2.67}Cl_{5.33}F_{40}N_{2.67}O_{2.67}$
Formula weight	698.77	2131.18
Crystal system	monoclinic	monoclinic
Space group	C 2/c	P $1 2_1 / c 1$
<i>a</i> , Å	37.742(7)	21.0007(15)
b, Å	10.4163(19)	19.4971(14)
<i>c</i> , Å	21.203(3)	19.4648(17)
α , deg	90	90
β , deg	106.565(7)	113.882(4)
γ, deg	90	90
Volume, Å ³	7990(2)	7287.5(10)
Z	8	3
Density, g.m ⁻³	1.162	1.457
Abs. coeff., mm ⁻¹	0.107	0.293
F(000)	2960	3208
Crystal size, mm	0.36 x 0.26 x 0.13	0.580 x 0.410 x 0.200
θ range, deg	2.94 to 27.48	2.955 to 27.424
Limiting indices	$-48 \le h \le 48, -11 \le k \le 13,$	$-23 \le h \le 27, -25 \le h \le 24, -25 \le h$
	$-27 \le l \le 24$	≤ 25
Reflec. Collected	26825	38629
Refle. Unique $[I > 2\sigma(I)]$	9058	16588
Data/restrains/param.	9058 / 15 / 455	16588 / 4 / 881
Goodness-of-it on F ²	0.763	0.965
$R_1 [I > 2\sigma(I)]$ (all data)	0.0797	0.1298
wR ₂ [I > 2σ (I)] (all data)	0.1918	0.3422
Largest diff. e.A ⁻³	0.344 and -0.287	1.859 and -1.115

Table S1.Summary of Crystal and Refinement Data for Complexes 4a and $[3b \cdot (OEt_2)_2]^{2+}[H_2N\{B(C_6F_5)_3\}_2]^{-2}.$