Supporting Information

Lanthanide coordination frameworks constructed from 3,3',4,4'-diphenylsulfonetetracarboxylic and 1,10-phenanthroline: Synthesis, crystal structures and luminescence properties

Chuan-Ti Li, Yi-Fan Zhao, Huai-Ming Hu*, Hui Zhao, Xiaofang Wang, Ganglin Xue

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China

Table of Contents:

- 1. Selected crystal data and structural refinement parameters (Table S1).
- 2. Selected bond lengths [Å] and angles [°] for compounds 1-12 (Table S2).
- 3. The PXRD patterns for compounds 1-12 (Figure S1).
- 4. The TGA curves of compounds 1-12 (Figure S2).
- 5. Excitation spectra of compounds 2, 4, 11 and 12 (Figure S3).
- Corresponding CIE coordinates of Tb³⁺-doped 2-Eu with different molar ratios excited at 365 nm (Table S3).
- The CIE coordinates of emissions for the doping molar ratio of Tb³⁺ is 70% excited at different wavelengths (Table S4).
- 8. PXRD patterns of **4**-Tb and after immersing in Fe³⁺ aqueous solution (**Figure S4**).
- 9. The UV-vis absorption spectrum of the Fe³⁺, H₄dpstc and 4-Tb in 0.01M Fe³⁺ aqueous solution (Figure S5).

Compound	1	2	3	4
Empirical formula	C ₁₆ H ₇ SmO ₁₃ S	C ₁₆ H ₁₀ EuO ₁₃ S	C ₁₆ H ₁₁ GdO ₁₃ S	C ₁₆ H ₆ TbO ₁₃ S
Formula weight	589.63	594.26	600.56	597.19
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1	P-1
<i>a</i> (Å)	5.9443(9)	5.9204(10)	5.9188(7)	5.9118(15)
<i>b</i> (Å)	13.177(2)	13.177(2)	13.1837(16)	13.215(3)
<i>c</i> (Å)	13.687(2)	13.667(2)	13.6877(16)	13.723(4)
α (°)	109.604(2)	109.572(2)	109.804(2)	110.088(4)
β (°)	95.076(2)	94.896(2)	94.954(2)	94.904(4)
γ (°)	93.038(2)	93.260(3)	93.385(2)	93.524(4)
V/Å ³	1002.1(3)	996.8(3)	996.7(2)	998.5(4)
Z	2	2	2	2
$\rho_{\rm calc} ({\rm g} \cdot {\rm cm}^{-3})$	1.954	1.980	2.001	1.986
F (000)	570	578	582	574
Reflections	4935	4882	4912	4838
collected	-755			
$S \text{ on} F^2$	1.068	0.0278	1.037	0.391
R _{int}	0.0220	1.029	0.0147	1.158
R_1, wR_2^a $[I > 2\sigma(I)]$	0.0351,0.0970	0.0394,0.1066	0.0263,0.0721	0.0783,0.2164
R_1, wR_2^a (all data)	0.0376,0.0988	0.0408,0.1086	0.0408,0.1086	0.0824,0.2201
CCDC	1489387	1489388	1489389	1489390
Compound	5	6	7	8

 Table S1. Selected crystal data and structural refinement parameters.

empirical formula	C ₁₆ H ₇ DyO ₁₃ S	C ₁₆ H ₇ HoO ₁₃ S	C ₁₆ H ₇ ErO ₁₃ S	C ₁₆ H ₇ YbO ₁₃ S
formula weight	601.78	604.21	606.54	612.32
crystal system	Triclinic	Triclinic	Triclinic	Triclinic
space group	P-1	P-1	P-1	P-1
<i>a</i> (Å)	5.8841(9)	5.8683(11)	5.8366(12)	5.9317(12)
<i>b</i> (Å)	13.181(2)	13.161(3)	13.138(3)	13.181(3)
<i>c</i> (Å)	13.718(2)	13.719(3)	13.748(3)	13.685(3)
α (°)	110.236(2)	110.324(3)	110.348(3)	109.756(3)
β (°)	94.862(2)	94.741(3)	94.596(3)	95.029(3)
γ (°)	93.699(2)	93.886(3)	94.043(3)	93.180(3)
$V(Å^3)$	989.7(3)	984.8(3)	979.8(4)	999.0(3)
Ζ	2	2	2	2
$\rho_{\text{calcd}} (\text{mg·m}^{-3})$	2.019	2.038	2.056	2.036
F(000)	578	580	582	586
Reflections collected	4922	4827	4857	4865
R _(int)	1.039	1.166	1.033	1.047
S on F ²	0.0229	0.0351	0.0303	0.0301
$R_1, \text{wR}_2 \left[I > 2\sigma(I)\right]$	0.0327,0.0780	0.0566,0.1137	0.0424, 0.1147	0.047, 0.1222
R_1 , wR ₂ (all data)	0.0374,0.0811	0.0624,0.1172	0.0467, 0.1192	0.054, 0.1276
CCDC	1489391	1489492	1489393	1489394
Compound	9	10	11	12
empirical formula	C ₂₈ H ₁₉ PrN ₂ O _{12.5} S	C ₂₈ H ₁₉ NdN ₂ O _{12.5} S	C ₂₈ H ₁₉ EuN ₂ O _{12.5} S	C ₂₈ H ₁₉ TbN ₂ O _{12.5} S
formula weight	756.42	759.75	767.47	774.43

crystal system	Triclinic	Triclinic	Triclinic	Triclinic
space group	P-1	P-1	P-1	P-1
a (Å)	10.5654(17)	10.5704(13)	10.6041(15)	10.6026(13)
<i>b</i> (Å)	11.668(2)	11.6325(13)	11.5157(17)	11.5116(14)
c (Å)	12.0378(19)	12.0347(14)	12.0048(17)	11.9957(15)
α (°)	109.547(3)	109.448(2)	108.843(2)	108.870(2)
β (°)	105.454(3)	105.460(2)	105.804(2)	105.771(2)
γ (°)	90.547(3)	90.611(2)	90.751(2)	90.769(2)
$V(Å^3)$	1339.9(4)	1336.8(3)	1326.7(3)	1325.0(3)
Z	2	2	2	2
$\rho_{\text{calcd}} (\text{mg}\cdot\text{m}^{-3})$	1.875	1.887	1.921	1.941
F(000)	752	754	760	764
Reflections collected	4661	4659	4619	4626
R _(int)	1.046	1.095	0.0279	0.0212
S on F ²	0.0409	0.0201	1.002	1.017
$R_1, \mathrm{wR}_2 \left[\mathrm{I} \ge 2\sigma(\mathrm{I})\right]$	0.0578, 0.1090	0.0353, 0.0743	0.0329, 0.0642	0.0316, 0.0700
R_1 , wR ₂ (all data)	0.0697, 0.1145	0.0389, 0.0762	0.0329, 0.0674	0.0384, 0.0742
CCDC	1489395	1489396	1489397	1489398

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

	Con	pound 1		
Sm(1)-O(2)#1	2.391(4)	Sm(1)-O(11)	2.414(4)	
Sm(1)-O(12)	2.439(4)	Sm(1)-O(3)#2	2.455(4)	
Sm(1)-O(4)#2	2.455(4)	Sm(1)-O(6)#3	2.475(4)	
Sm(1)-O(1)	2.481(4)	Sm(1)-O(5)#3	2.515(4)	
Sm(1)-O(2)	2.687(4)			
O(2)#1-Sm(1)-O(12)	86.43(15)	O(2)#1-Sm(1)-O(3)#2	79.99(15)	
O(12)-Sm(1)-O(3)#2	127.49(14)	O(2)#1-Sm(1)-O(4)#2	80.64(15)	
O(12)-Sm(1)-O(4)#2	74.60(15)	O(3)#2-Sm(1)-O(4)#2	53.28(13)	
O(2)#1-Sm(1)-O(6)#3	154.30(15)	O(12)-Sm(1)-O(6)#3	92.97(16)	
O(3)#2-Sm(1)-O(6)#3	80.07(15)	O(4)#2-Sm(1)-O(6)#3	74.46(16)	
O(2)#1-Sm(1)-O(1)	114.17(14)	O(12)-Sm(1)-O(1)	148.30(16)	
O(3)#2-Sm(1)-O(1)	81.51(14)	O(4)#2-Sm(1)-O(1)	130.19(15)	
O(6)#3-Sm(1)-O(1)	78.55(15)	O(2)#1-Sm(1)-O(5)#3	151.78(14)	
O(12)-Sm(1)-O(5)#3	80.67(15)	O(3)#2-Sm(1)-O(5)#3	127.52(14)	
O(4)#2-Sm(1)-O(5)#3	119.19(15)	O(6)#3-Sm(1)-O(5)#3	52.21(14)	
O(1)-Sm(1)-O(5)#3	69.95(14)	O(2)#1-Sm(1)-O(2)	64.29(15)	
O(12)-Sm(1)-O(2)	140.94(14)	O(3)#2-Sm(1)-O(2)	74.59(13)	
O(4)#2-Sm(1)-O(2)	121.40(14)	O(6)#3-Sm(1)-O(2)	124.73(15)	
O(1)-Sm(1)-O(2)	49.91(13)	O(5)#3-Sm(1)-O(2)	112.79(13)	
O(1)#1-Sm(1)-O(11)	78.29(16)	O(11)-Sm(1)-O(3)#2	145.05(16)	
O(11)-Sm(1)-O(5)#3	74.49(16)	O(11)-Sm(1)-O(12)	77.71(16)	
O(11)-Sm(1)-O(6)#3	127.01(16)	O(11)-Sm(1)-O(2)	83.26(17)	
Compound 2				
Eu(1)-O(1)#1	2.378(4)	Eu(1)-O(11)	2.398(4)	

Table S2.Selected bond lengths [Å] and angles [°] for compounds 1-12.

Eu(1)-O(12)	2.416(4)	Eu(1)-O(3)#2	2.433(4)
Eu(1)-O(4)#2	2.448(4)	Eu(1)-O(6)#3	2.460(4)
Eu(1)-O(2)	2.467(4)	Eu(1)-O(5)#3	2.502(4)
Eu(1)-O(1)	2.682(4)		
O(1)#1-Eu(1)-O(11)	78.29(16)	O(1)#1-Eu(1)-O(12)	86.65(15)
O(11)-Eu(1)-O(12)	77.71(16)	O(1)#1-Eu(1)-O(3)#2	79.64(14)
O(11)-Eu(1)-O(3)#2	145.05(16)	O(12)-Eu(1)-O(3)#2	127.55(14)
O(1)#1-Eu(1)-O(4)#2	80.68(15)	O(11)-Eu(1)-O(4)#2	145.84(17)
O(12)-Eu(1)-O(4)#2	74.46(14)	O(3)#2-Eu(1)-O(4)#2	53.51(13)
O(1)#1-Eu(1)-O(6)#3	154.11(14)	O(11)-Eu(1)-O(6)#3	127.01(16)
O(12)-Eu(1)-O(6)#3	93.33(16)	O(3)#2-Eu(1)-O(6)#3	79.93(14)
O(4)#2-Eu(1)-O(6)#3	74.42(15)	O(1)#1-Eu(1)-O(2)	113.86(13)
O(11)-Eu(1)-O(2)	83.26(17)	O(12)-Eu(1)-O(2)	148.52(15)
O(3)#2-Eu(1)-O(2)	81.30(14)	O(4)#2-Eu(1)-O(2)	130.16(14)
O(6)#3-Eu(1)-O(2)	78.38(15)	O(1)#1-Eu(1)-O(5)#3	151.80(13)
O(11)-Eu(1)-O(5)#3	74.49(16)	O(12)-Eu(1)-O(5)#3	80.51(15)
O(3)#2-Eu(1)-O(5)#3	127.84(14)	O(4)#2-Eu(1)-O(5)#3	119.11(15)
O(6)#3-Eu(1)-O(5)#3	52.54(13)	O(2)-Eu(1)-O(5)#3	70.29(14)
O(1)#1-Eu(1)-O(1)	63.92(14)	O(11)-Eu(1)-O(1)	71.76(15)
O(12)-Eu(1)-O(1)	140.89(14)	O(3)#2-Eu(1)-O(1)	74.29(13)
	Com	pound 3	
Gd(1)-O(1)#1	2.367(3)	Gd(1)-O(11)	2.375(4)
Gd(1)-O(12)	2.403(3)	Gd(1)-O(3)#2	2.430(3)
Gd(1)-O(4)#2	2.437(3)	Gd(1)-O(2)	2.451(3)
Gd(1)-O(5)#3	2.454(3)	Gd(1)-O(6)#3	2.497(3)
Gd(1)-O(1)	2.682(3)		
O(1)#1-Gd(1)-O(11)	77.70(13)	O(1)#1-Gd(1)-O(12)	86.47(13)
O(11)-Gd(1)-O(12)	77.23(13)	O(1)#1-Gd(1)-O(3)#2	79.86(12)

O(11)-Gd(1)-O(3)#2	145.10(12)	O(12)-Gd(1)-O(3)#2	127.63(12)
O(1)#1-Gd(1)-O(4)#2	80.75(12)	O(11)-Gd(1)-O(4)#2	145.03(14)
O(12)-Gd(1)-O(4)#2	74.24(12)	O(3)#2-Gd(1)-O(4)#2	53.80(11)
O(1)#1-Gd(1)-O(2)	114.04(11)	O(11)-Gd(1)-O(2)	83.80(14)
O(12)-Gd(1)-O(2)	148.39(12)	O(3)#2-Gd(1)-O(2)	81.35(11)
O(4)#2-Gd(1)-O(2)	130.46(12)	O(1)#1-Gd(1)-O(5)#3	154.27(12)
O(11)-Gd(1)-O(5)#3	127.34(13)	O(12)-Gd(1)-O(5)#3	93.25(13)
O(3)#2-Gd(1)-O(5)#3	80.02(12)	O(4)#2-Gd(1)-O(5)#3	74.45(13)
O(2)-Gd(1)-O(5)#3	78.41(12)	O(1)#1-Gd(1)-O(6)#3	151.43(11)
O(11)-Gd(1)-O(6)#3	74.73(13)	O(12)-Gd(1)-O(6)#3	80.33(13)
O(3)#2-Gd(1)-O(6)#3	128.02(11)	O(4)#2-Gd(1)-O(6)#3	119.05(12)
O(2)-Gd(1)-O(6)#3	70.34(11)	O(5)#3-Gd(1)-O(6)#3	52.62(11)
O(1)#1-Gd(1)-O(1)	63.97(12)	O(11)-Gd(1)-O(1)	71.98(12)
O(12)-Gd(1)-O(1)	140.83(11)	O(3)#2-Gd(1)-O(1)	74.25(10)
O(4)#2-Gd(1)-O(1)	121.49(11)	O(2)-Gd(1)-O(1)	50.10(10)
O(5)#3-Gd(1)-O(1)	124.66(12)	O(6)#3-Gd(1)-O(1)	113.22(11)
	Com	pound 4	1
Tb(1)-O(2)#1	2.341(10)	Tb(1)-O(11)	2.385(10)
Tb(1)-O(12)	2.404(11)	Tb(1)-O(3)#2	2.425(10)
Tb(1)-O(6)#3	2.434(11)	Tb(1)-O(1)	2.439(10)
Tb(1)-O(4)#2	2.441(10)	Tb(1)-O(5)#3	2.475(11)
Tb(1)-O(2)	2.717(10)		
O(2)#1-Tb(1)-O(11)	77.4(4)	O(2)#1-Tb(1)-O(12)	86.2(4)
O(11)-Tb(1)-O(12)	76.7(4)	O(2)#1-Tb(1)-O(3)#2	79.5(4)
O(11)-Tb(1)-O(3)#2	145.0(4)	O(12)-Tb(1)-O(3)#2	127.5(3)
O(2)#1-Tb(1)-O(6)#3	154.1(4)	O(11)-Tb(1)-O(6)#3	127.7(4)
O(12)-Tb(1)-O(6)#3	93.5(4)	O(3)#2-Tb(1)-O(6)#3	80.3(4)
O(2)#1-Tb(1)-O(1)	113.8(3)	O(11)-Tb(1)-O(1)	84.4(4)
O(12)-Tb(1)-O(1)	148.9(4)	O(3)#2-Tb(1)-O(1)	81.3(3)
L	1	1	1

O(6)#3-Tb(1)-O(1)	78.6(4)	O(2)#1-Tb(1)-O(4)#2	80.5(4)
O(11)-Tb(1)-O(4)#2	144.2(4)	O(12)-Tb(1)-O(4)#2	73.9(4)
O(3)#2-Tb(1)-O(4)#2	54.0(3)	O(6)#3-Tb(1)-O(4)#2	74.6(4)
O(1)-Tb(1)-O(4)#2	130.7(3)	O(2)#1-Tb(1)-O(5)#3	151.1(4)
O(11)-Tb(1)-O(5)#3	74.6(4)	O(12)-Tb(1)-O(5)#3	80.7(4)
O(3)#2-Tb(1)-O(5)#3	128.6(3)	O(6)#3-Tb(1)-O(5)#3	53.1(3)
O(1)-Tb(1)-O(5)#3	70.5(4)	O(4)#2-Tb(1)-O(5)#3	119.5(4)
O(2)#1-Tb(1)-O(2)	64.0(4)	O(11)-Tb(1)-O(2)	72.1(4)
O(12)-Tb(1)-O(2)	140.6(4)	O(3)#2-Tb(1)-O(2)	74.2(3)
O(6)#3-Tb(1)-O(2)	124.7(4)	O(1)-Tb(1)-O(2)	49.8(3)
O(4)#2-Tb(1)-O(2)	121.7(3)	O(5)#3-Tb(1)-O(2)	112.8(4)
	Corr	pound 5	
Dy(1)-O(2)#1	2.328(4)	Dy(1)-O(12)	2.362(4)
Dy(1)-O(11)	2.372(4)	Dy(1)-O(3)#2	2.399(4)
Dy(1)-O(4)#2	2.409(4)	Dy(1)-O(1)	2.419(4)
Dy(1)-O(6)#3	2.421(4)	Dy(1)-O(5)#3	2.463(4)
Dy(1)-O(2)	2.723(4)		
O(2)#1-Dy(1)-O(12)	77.13(14)	O(2)#1-Dy(1)-O(11)	86.40(15)
O(12)-Dy(1)-O(11)	77.19(15)	O(2)#1-Dy(1)-O(3)#2	79.69(14)
O(12)-Dy(1)-O(3)#2	144.34(14)	O(11)-Dy(1)-O(3)#2	127.94(14)
O(2)#1-Dy(1)-O(4)#2	80.65(15)	O(12)-Dy(1)-O(4)#2	144.67(15)
O(11)-Dy(1)-O(4)#2	74.31(14)	O(3)#2-Dy(1)-O(4)#2	54.08(13)
O(2)#1-Dy(1)-O(1)	113.68(13)	O(12)-Dy(1)-O(1)	83.83(15)
O(11)-Dy(1)-O(1)	148.55(15)	O(3)#2-Dy(1)-O(1)	81.12(13)
O(4)#2-Dy(1)-O(1)	130.61(14)	O(2)#1-Dy(1)-O(6)#3	154.23(14)
O(12)-Dy(1)-O(6)#3	127.98(14)	O(11)-Dy(1)-O(6)#3	93.46(16)
O(3)#2-Dy(1)-O(6)#3	80.17(14)	O(4)#2-Dy(1)-O(6)#3	74.55(15)
O(1)-Dy(1)-O(6)#3	78.69(15)	O(2)#1-Dy(1)-O(5)#3	150.89(14)
O(12)-Dy(1)-O(5)#3	74.77(14)	O(11)-Dy(1)-O(5)#3	80.16(15)
L	1	1	1

O(3)#2-Dy(1)-O(5)#3	128.67(13)	O(4)#2-Dy(1)-O(5)#3	119.53(14)
O(1)-Dy(1)-O(5)#3	70.70(14)	O(6)#3-Dy(1)-O(5)#3	53.23(13)
O(2)#1-Dy(1)-O(2)	63.96(15)	O(12)-Dy(1)-O(2)	71.87(14)
O(11)-Dy(1)-O(2)	140.84(13)	O(3)#2-Dy(1)-O(2)	73.72(12)
O(4)#2-Dy(1)-O(2)	121.27(13)	O(1)-Dy(1)-O(2)	49.74(12)
O(6)#3-Dy(1)-O(2)	124.48(14)	O(5)#3-Dy(1)-O(2)	113.16(13)
	Com	pound 6	
Ho(1)-O(2)#1	2.325(8)	Ho(1)-O(11)	2.347(8)
Ho(1)-O(12)	2.362(7)	Ho(1)-O(1)	2.385(7)
Ho(1)-O(4)#2	2.388(8)	Ho(1)-O(3)#2	2.391(8)
Ho(1)-O(5)#3	2.414(8)	Ho(1)-O(6)#3	2.443(8)
Ho(1)-O(2)	2.736(8)		
O(2)#1-Ho(1)-O(11)	77.3(3)	O(2)#1-Ho(1)-O(12)	86.7(3)
O(11)-Ho(1)-O(12)	77.4(3)	O(2)#1-Ho(1)-O(1)	113.5(3)
O(11)-Ho(1)-O(1)	83.5(3)	O(12)-Ho(1)-O(1)	148.4(3)
O(2)#1-Ho(1)-O(4)#2	80.5(3)	O(11)-Ho(1)-O(4)#2	144.5(3)
O(12)-Ho(1)-O(4)#2	73.9(3)	O(1)-Ho(1)-O(4)#2	131.1(3)
O(2)#1-Ho(1)-O(3)#2	79.3(3)	O(11)-Ho(1)-O(3)#2	143.7(3)
O(12)-Ho(1)-O(3)#2	128.3(2)	O(1)-Ho(1)-O(3)#2	80.9(3)
O(4)#2-Ho(1)-O(3)#2	54.8(2)	O(2)#1-Ho(1)-O(5)#3	153.9(3)
O(11)-Ho(1)-O(5)#3	128.3(3)	O(12)-Ho(1)-O(5)#3	93.6(3)
O(1)-Ho(1)-O(5)#3	78.7(3)	O(4)#2-Ho(1)-O(5)#3	74.6(3)
O(3)#2-Ho(1)-O(5)#3	80.1(3)	O(2)#1-Ho(1)-O(6)#3	150.9(3)
O(11)-Ho(1)-O(6)#3	74.6(3)	O(12)-Ho(1)-O(6)#3	80.1(3)
O(1)-Ho(1)-O(6)#3	70.6(2)	O(4)#2-Ho(1)-O(6)#3	119.7(3)
O(3)#2-Ho(1)-O(6)#3	128.9(3)	O(5)#3-Ho(1)-O(6)#3	53.7(3)
O(2)#1-Ho(1)-O(2)	64.1(3)	O(11)-Ho(1)-O(2)	71.4(2)
O(12)-Ho(1)-O(2)	140.9(3)	O(1)-Ho(1)-O(2)	49.5(2)
O(4)#2-Ho(1)-O(2)	121.9(2)	O(3)#2-Ho(1)-O(2)	73.6(2)

O(5)#3-Ho(1)-O(2)	124.2(3)	O(6)#3-Ho(1)-O(2)	112.7(2)
	Corr	pound 7	1
Er(1)-O(1)	2.274(5)	Er(1)-O(11)	2.330(6)
Er(1)-O(12)	2.340(5)	Er(1)-O(2)#1	2.371(5)
Er(1)-O(5)#2	2.385(6)	Er(1)-O(3)#3	2.387(5)
Er(1)-O(4)#3	2.391(6)	Er(1)-O(6)#2	2.449(5)
Er(1)-O(1)#1	2.820(6)		
O(1)-Er(1)-O(11)	77.0(2)	O(1)-Er(1)-O(12)	86.2(2)
O(11)-Er(1)-O(12)	77.7(2)	O(1)-Er(1)-O(2)#1	112.96(19)
O(11)-Er(1)-O(2)#1	83.0(2)	O(12)-Er(1)-O(2)#1	148.9(2)
O(1)-Er(1)-O(5)#2	153.9(2)	O(11)-Er(1)-O(5)#2	128.71(19)
O(12)-Er(1)-O(5)#2	94.1(2)	O(2)#1-Er(1)-O(5)#2	79.2(2)
O(1)-Er(1)-O(3)#3	78.94(19)	O(11)-Er(1)-O(3)#3	142.52(19)
O(12)-Er(1)-O(3)#3	128.69(19)	O(2)#1-Er(1)-O(3)#3	80.54(19)
O(5)#2-Er(1)-O(3)#3	80.54(18)	O(1)-Er(1)-O(4)#3	80.0(2)
O(11)-Er(1)-O(4)#3	144.8(2)	O(12)-Er(1)-O(4)#3	74.42(19)
O(2)#1-Er(1)-O(4)#3	131.0(2)	O(5)#2-Er(1)-O(4)#3	74.9(2)
O(3)#3-Er(1)-O(4)#3	54.80(18)	O(1)-Er(1)-O(6)#2	151.07(19)
O(11)-Er(1)-O(6)#2	75.27(18)	O(12)-Er(1)-O(6)#2	80.18(19)
O(2)#1-Er(1)-O(6)#2	71.42(18)	O(5)#2-Er(1)-O(6)#2	53.49(17)
O(3)#3-Er(1)-O(6)#2	129.16(17)	O(4)#3-Er(1)-O(6)#2	119.83(18)
Er(1)-O(1)	2.274(5)	Er(1)-O(11)	2.330(6)
Er(1)-O(12)	2.340(5)	Er(1)-O(2)#1	2.371(5)
Er(1)-O(5)#2	2.385(6)	Er(1)-O(3)#3	2.387(5)
Er(1)-O(4)#3	2.391(6)	Er(1)-O(6)#2	2.449(5)
	Corr	pound 8	1
Yb(1)-O(2)#1	2.388(6)	Yb(1)-O(11)	2.406(7)
Yb(1)-O(12)	2.424(7)	Yb(1)-O(3)#2	2.441(6)
Yb(1)-O(4)#2	2.448(6)	Yb(1)-O(1)	2.463(6)

Yb(1)-O(6)#3	2.465(7)	Yb(1)-O(5)#3	2.494(6)
Yb(1)-O(2)	2.669(6)		
O(2)#1-Yb(1)-O(11)	78.0(2)	O(2)#1-Yb(1)-O(12)	86.9(2)
O(11)-Yb(1)-O(12)	77.0(2)	O(2)#1-Yb(1)-O(3)#2	79.7(2)
O(11)-Yb(1)-O(3)#2	145.5(2)	O(12)-Yb(1)-O(3)#2	127.6(2)
O(2)#1-Yb(1)-O(4)#2	80.8(2)	O(11)-Yb(1)-O(4)#2	145.3(3)
O(12)-Yb(1)-O(4)#2	74.8(2)	O(3)#2-Yb(1)-O(4)#2	53.2(2)
O(2)#1-Yb(1)-O(1)	113.8(2)	O(11)-Yb(1)-O(1)	83.4(3)
O(12)-Yb(1)-O(1)	147.9(2)	O(3)#2-Yb(1)-O(1)	81.9(2)
O(4)#2-Yb(1)-O(1)	130.6(2)	O(2)#1-Yb(1)-O(6)#3	154.1(2)
O(11)-Yb(1)-O(6)#3	127.3(2)	O(12)-Yb(1)-O(6)#3	93.1(3)
O(3)#2-Yb(1)-O(6)#3	79.8(2)	O(4)#2-Yb(1)-O(6)#3	74.3(2)
O(1)-Yb(1)-O(6)#3	78.7(2)	O(2)#1-Yb(1)-O(5)#3	151.8(2)
O(11)-Yb(1)-O(5)#3	74.7(2)	O(12)-Yb(1)-O(5)#3	80.4(2)
O(3)#2-Yb(1)-O(5)#3	127.7(2)	O(4)#2-Yb(1)-O(5)#3	119.2(2)
O(1)-Yb(1)-O(5)#3	69.9(2)	O(6)#3-Yb(1)-O(5)#3	52.6(2)
O(2)#1-Yb(1)-O(2)	64.0(2)	O(11)-Yb(1)-O(2)	71.9(2)
O(12)-Yb(1)-O(2)	140.8(2)	O(3)#2-Yb(1)-O(2)	74.7(2)
O(4)#2-Yb(1)-O(2)	121.6(2)	O(1)-Yb(1)-O(2)	49.8(2)
O(6)#3-Yb(1)-O(2)	124.6(2)	O(5)#3-Yb(1)-O(2)	112.7(2)
	Com	pound 9	1
Pr(1)-O(8)#1	2.367(6)	Pr(1)-O(7)#2	2.404(5)
Pr(1)-O(2)	2.502(5)	Pr(1)-O(3)#3	2.529(5)
Pr(1)-O(1)	2.536(5)	Pr(1)-O(11)	2.586(6)
Pr(1)-O(4)#3	2.639(5)	Pr(1)-N(2)	2.669(6)
Pr(1)-N(1)	2.694(6)		
O(8)#1-Pr(1)-O(7)#2	84.54(18)	O(8)#1-Pr(1)-O(2)	136.55(18)
O(7)#2-Pr(1)-O(2)	96.06(17)	O(8)#1-Pr(1)-O(3)#3	126.45(18)

O(7)#2-Pr(1)-O(3)#3	141.07(17)	O(2)-Pr(1)-O(3)#3	77.40(16)
O(8)#1-Pr(1)-O(1)	87.6(2)	O(7)#2-Pr(1)-O(1)	74.07(18)
O(2)-Pr(1)-O(1)	51.70(17)	O(3)#3-Pr(1)-O(1)	123.89(18)
O(8)#1-Pr(1)-O(11)	80.76(19)	O(7)#2-Pr(1)-O(11)	140.87(18)
O(2)-Pr(1)-O(11)	71.66(18)	O(3)#3-Pr(1)-O(11)	73.98(18)
O(1)-Pr(1)-O(11)	69.29(19)	O(8)#1-Pr(1)-O(4)#3	76.71(18)
O(7)#2-Pr(1)-O(4)#3	141.64(17)	O(2)-Pr(1)-O(4)#3	120.53(16)
O(3)#3-Pr(1)-O(4)#3	50.30(16)	O(1)-Pr(1)-O(4)#3	136.85(18)
O(11)-Pr(1)-O(4)#3	68.64(18)	O(8)#1-Pr(1)-N(2)	143.28(19)
O(7)#2-Pr(1)-N(2)	72.22(18)	O(2)-Pr(1)-N(2)	75.35(18)
O(3)#3-Pr(1)-N(2)	68.98(18)	O(1)-Pr(1)-N(2)	111.7(2)
O(11)-Pr(1)-N(2)	134.6(2)	O(4)#3-Pr(1)-N(2)	104.30(18)
O(8)#1-Pr(1)-N(1)	85.2(2)	O(7)#2-Pr(1)-N(1)	72.50(18)
O(2)-Pr(1)-N(1)	136.53(18)	O(3)#3-Pr(1)-N(1)	86.03(19)
O(1)-Pr(1)-N(1)	146.29(19)	O(11)-Pr(1)-N(1)	141.04(19)
O(4)#3-Pr(1)-N(1)	72.82(18)	N(2)-Pr(1)-N(1)	61.2(2)
	Com	pound 10	1
Nd(1)-O(8)#1	2.356(3)	Nd(1)-O(7)#2	2.393(3)
Nd(1)-O(2)	2.485(3)	Nd(1)-O(3)#3	2.514(3)
Nd(1)-O(1)	2.530(3)	Nd(1)-O(11)	2.572(3)
Nd(1)-O(4)#3	2.628(3)	Nd(1)-N(2)	2.661(4)
Nd(1)-N(1)	2.668(4)		
O(8)#1-Nd(1)-O(7)#2	84.67(12)	O(8)#1-Nd(1)-O(2)	136.96(12)
O(7)#2-Nd(1)-O(2)	96.46(11)	O(8)#1-Nd(1)-O(3)#3	126.17(12)
O(7)#2-Nd(1)-O(3)#3	141.19(11)	O(2)-Nd(1)-O(3)#3	76.96(10)
O(8)#1-Nd(1)-O(1)	87.62(13)	O(7)#2-Nd(1)-O(1)	74.29(11)
O(2)-Nd(1)-O(1)	52.18(11)	O(3)#3-Nd(1)-O(1)	123.80(10)
O(8)#1-Nd(1)-O(11)	80.31(11)	O(7)#2-Nd(1)-O(11)	140.54(12)
O(2)-Nd(1)-O(11)	71.77(11)	O(3)#3-Nd(1)-O(11)	74.30(11)

O(1)-Nd(1)-O(11)	68.84(12)	O(8)#1-Nd(1)-O(4)#3	75.97(12)
O(7)#2-Nd(1)-O(4)#3	141.51(11)	O(2)-Nd(1)-O(4)#3	120.39(10)
O(3)#3-Nd(1)-O(4)#3	50.74(10)	O(1)-Nd(1)-O(4)#3	136.26(11)
O(11)-Nd(1)-O(4)#3	68.56(11)	O(8)#1-Nd(1)-N(2)	143.21(12)
O(7)#2-Nd(1)-N(2)	72.13(11)	O(2)-Nd(1)-N(2)	75.26(11)
O(3)#3-Nd(1)-N(2)	69.20(11)	O(1)-Nd(1)-N(2)	111.95(12)
O(11)-Nd(1)-N(2)	135.12(12)	O(4)#3-Nd(1)-N(2)	104.90(11)
O(8)#1-Nd(1)-N(1)	84.71(12)	O(7)#2-Nd(1)-N(1)	72.73(12)
O(2)-Nd(1)-N(1)	136.82(11)	O(3)#3-Nd(1)-N(1)	86.09(12)
O(1)-Nd(1)-N(1)	146.67(12)	O(11)-Nd(1)-N(1)	140.70(12)
O(4)#3-Nd(1)-N(1)	72.62(12)	N(2)-Nd(1)-N(1)	61.59(12)
	Com	pound 11	
Eu(1)-O(1)	2.320(3)	Eu(1)-O(2)#1	2.348(3)
Eu(1)-O(7)#2	2.425(3)	Eu(1)-O(6)#3	2.475(3)
Eu(1)-O(8)#2	2.506(3)	Eu(1)-O(11)	2.527(3)
Eu(1)-O(5)#3	2.597(3)	Eu(1)-N(1)	2.615(4)
Eu(1)-N(2)	2.626(4)		
O(1)-Eu(1)-O(2)#1	84.46(11)	O(1)-Eu(1)-O(7)#2	135.94(11)
O(2)#1-Eu(1)-O(7)#2	96.30(11)	O(1)-Eu(1)-O(6)#3	126.17(11)
O(2)#1-Eu(1)-O(6)#3	141.85(10)	O(7)#2-Eu(1)-O(6)#3	77.37(10)
O(1)-Eu(1)-O(8)#2	85.94(11)	O(2)#1-Eu(1)-O(8)#2	73.72(11)
O(7)#2-Eu(1)-O(8)#2	52.86(10)	O(6)#3-Eu(1)-O(8)#2	124.61(10)
O(1)-Eu(1)-O(11)	79.26(11)	O(2)#1-Eu(1)-O(11)	139.92(11)
O(7)#2-Eu(1)-O(11)	72.16(11)	O(6)#3-Eu(1)-O(11)	74.50(11)
O(8)#2-Eu(1)-O(11)	68.83(12)	O(1)-Eu(1)-O(5)#3	75.65(10)
O(2)#1-Eu(1)-O(5)#3	141.19(11)	O(7)#2-Eu(1)-O(5)#3	121.17(10)
O(6)#3-Eu(1)-O(5)#3	51.20(9)	O(8)#2-Eu(1)-O(5)#3	135.90(11)
O(11)-Eu(1)-O(5)#3	68.54(11)	O(1)-Eu(1)-N(1)	84.83(11)
O(2)#1-Eu(1)-N(1)	73.84(11)	O(7)#2-Eu(1)-N(1)	137.82(11)

O(6)#3-Eu(1)-N(1)	85.81(11)	O(8)#2-Eu(1)-N(1)	146.95(11)				
O(11)-Eu(1)-N(1)	139.48(12)	O(5)#3-Eu(1)-N(1)	71.49(11)				
O(1)-Eu(1)-N(2)	144.13(11)	O(2)#1-Eu(1)-N(2)	73.00(11)				
O(7)#2-Eu(1)-N(2)	75.34(11)	O(6)#3-Eu(1)-N(2)	68.99(11)				
O(8)#2-Eu(1)-N(2)	112.88(11)	O(11)-Eu(1)-N(2)	135.25(11)				
Compound 12							
Tb(1)-O(5)#1	Tb(1)-O(5)#1 2.315(3) Tb(1)-O(6)#2						
Tb(1)-O(3)#3	2.437(3)	Tb(1)-O(1)	2.474(3)				
Tb(1)-O(4)#3	2.499(3)	Tb(1)-O(11)	2.535(4)				
Tb(1)-O(2)	2.597(3)	Tb(1)-N(2)	2.615(4)				
Tb(1)-N(1)	2.626(4)						
O(5)#1-Tb(1)-O(6)#2	84.14(12)	O(5)#1-Tb(1)-O(3)#3	135.90(11)				
O(6)#2-Tb(1)-O(3)#3	96.49(12)	O(5)#1-Tb(1)-O(1)	126.36(11)				
O(6)#2-Tb(1)-O(1)	141.79(11)	O(3)#3-Tb(1)-O(1)	77.46(11)				
O(5)#1-Tb(1)-O(4)#3	85.88(12)	O(6)#2-Tb(1)-O(4)#3	73.85(12)				
O(3)#3-Tb(1)-O(4)#3	52.82(10)	O(1)-Tb(1)-O(4)#3	124.70(11)				
O(5)#1-Tb(1)-O(11)	79.39(11)	O(6)#2-Tb(1)-O(11)	139.81(12)				
O(3)#3-Tb(1)-O(11)	72.03(11)	O(1)-Tb(1)-O(11)	74.75(11)				
O(4)#3-Tb(1)-O(11)	68.64(12)	O(5)#1-Tb(1)-O(2)	75.84(11)				
O(6)#2-Tb(1)-O(2)	141.14(11)	O(3)#3-Tb(1)-O(2)	121.07(10)				
O(1)-Tb(1)-O(2)	51.15(10)	O(4)#3-Tb(1)-O(2)	135.79(12)				
O(11)-Tb(1)-O(2)	68.60(11)	O(5)#1-Tb(1)-N(2)	84.92(12)				
O(6)#2-Tb(1)-N(2)	73.62(12)	O(3)#3-Tb(1)-N(2)	137.72(11)				
O(1)-Tb(1)-N(2)	85.70(12)	O(4)#3-Tb(1)-N(2)	146.90(12)				
O(11)-Tb(1)-N(2)	139.79(12)	O(2)-Tb(1)-N(2)	71.74(12)				
O(5)#1-Tb(1)-N(1)	144.12(12)	O(6)#2-Tb(1)-N(1)	73.09(12)				
O(3)#3-Tb(1)-N(1)	75.28(11)	O(1)-Tb(1)-N(1)	68.86(11)				
O(4)#3-Tb(1)-N(1)	112.82(12)	O(11)-Tb(1)-N(1)	135.21(11)				
O(2)-Tb(1)-N(1)	105.08(12)	N(2)-Tb(1)-N(1)	62.46(12)				

Symmetry transformations used to generate equivalent atoms: For **1** #1 1-x,1-y,-z; #2 2-x,1-y,-z; #3 2-x,1-y,1-z. For **2** #1 1-x,1-y,-z; #2 2-x,1-y,-z; #3 2-x,1-y,1-z. For **3** #1 1-x,1-y,-z; #2 2-x,1-y,-z; #3 2-x,1-y,1-z. For **4** #1 1-x,1-y,-z; #2 2-x,1-y,-z; #3 2-x,1-y,1-z. For **5** #1 1-x,1-y,-z; #2 2-x,1-y,-z; #3 2-x,1-y,1-z. For **6** #1 1-x,1-y,-z; #2 2-x,1-y,-z; #3 2-x,1-y,1-z. For **7** #1 1-x,1-y,-z; #2 2-x,1-y,-z; #3 2-x,1-y,1-z. For **8** #1 1-x,1-y,-z; #2 2-x,1-y,-z; #3 2-x,1-y,1-z. For **7** #1 1-x,1-y,-z; #2 2-x,1-y,1-z; 1-x,-y,1-z; x,-1+y,-1+z. For **10** #1 1-x,-y,1-z; 1-x,-y,1-z; x,-1+y,-1+z. For **10** #1 1-x,-y,1-z; 1-x,-y,1-z; 1-x,-y,1-z; x,-1+y,-1+z. For **11** #1 1-x,-y,1-z; 1-x,-y,1-z; x,-1+y,-1+z.

Figure S1. The PXRD patterns for compounds 1-12.

Figure S2. The TGA curves of compounds 1-12.

Figure S3. Excitation spectra of compounds 2, 4, 11 and 12.

Table	S3.	Corresponding	CIE	coordinates	of	Tb ³⁺	-doped	2-Eu	with	different	molar
-------	-----	---------------	-----	-------------	----	------------------	--------	------	------	-----------	-------

Sample	10%	30%	50%	60%	70%
CIE	(0.262,0.534)	(0.266,0.495)	(0.289,0.449)	(0.328,0.414)	(0.358,0.384)
(x.y)					
Sample	80%	90%	95%	98%	
CIE	(0.388,0.363)	(0.402,0.354)	(0.410,0.342)	(0.415,0.325)	
(x.y)					

ratios excited at 365 nm.

Table S4. The CIE coordinates of emissions for the doping molar ratio of Tb^{3+} is 70% excited at different wavelengths.

excitation wavelength (nm)	345	365	380	390
CIE (x.y)	(0.362,0.439)	(0.358,0.384)	(0.344,0.369)	(0.332,0.337)

Figure S4. PXRD patterns of 4-Tb and after immersing in Fe³⁺ aqueous solution.

Figure S5. The UV-vis absorption spectrum of the Fe^{3+} , H₄dpstc and 4-Tb in 0.01M Fe^{3+} aqueous solution.

