**Supplementary Information for** 

# Iron Complexes of a Bidentate Picolyl–NHC Ligand: Synthesis, Structure and Reactivity

Qiuming Liang, Trevor Janes, Xhoana Gjergji and Datong Song\*

Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6

E-mail: dsong@chem.utoronto.ca; Tel: +1 416 978 7014; Fax: +1 416 978 7013

| 1. | X-ray crystallography | S2  |
|----|-----------------------|-----|
| 2. | NMR spectra           | S4  |
| 3. | IR spectra            | S9  |
| 4. | C-C coupling reaction | S11 |
| 5. | References            | S14 |

# 1. X-ray Crystallography

The X-ray diffraction data were collected on a Bruker Kappa Apex II diffractometer with graphite-monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at 150 K controlled by an Oxford Cryostream 700 series low-temperature system and processed with the Bruker Apex 2 software package.<sup>1</sup> The structures were solved by direct methods and refined using SHELX-2013 and SHELX-2014 software packages.<sup>2,3</sup> All non-hydrogen atoms were refined anisotropically, except for those involved in the disordered THF molecules in the lattice of **1**. All hydrogen atoms were calculated using the riding model. The disordered THF molecules in the lattice of **1** were successfully modeled using two sets of coordinates with the occupancies constrained to a 1:1 ratio. The diffuse residual electron density from solvent molecules in the lattice of **4** was removed with the SQUEEZE function of PLATON<sup>4</sup> and was not included in the formula or the refinement. Selected crystallographic data are summarized in Tables S1–S2.

|                                              | 1 (2THF)                   | 2                         | 3                       | 4                   |
|----------------------------------------------|----------------------------|---------------------------|-------------------------|---------------------|
| Empirical formula                            | $C_{44}H_{54}N_6O_2Br_2Fe$ | $C_{24}H_{37}N_4BrSi_2Fe$ | $C_{18}H_{19}N_3Br_2Fe$ | $C_{36}H_{36}FeN_6$ |
| FW (g·mol <sup>-1</sup> )                    | 914.60                     | 573.51                    | 493.03                  | 608.56              |
| Crystal system                               | Monoclinic                 | Triclinic                 | Monoclinic              | Monoclinic          |
| Space Group                                  | P 2 <sub>1</sub> /n        | P -1                      | $P 2_1/n$               | I 2/a               |
| Ζ                                            | 4                          | 4                         | 4                       | 8                   |
| a (Å)                                        | 17.771(1)                  | 9.9454(9)                 | 11.9641(7)              | 22.229(2)           |
| <i>b</i> (Å)                                 | 10.0076(8)                 | 16.077(1)                 | 10.4299(6)              | 9.3929(6)           |
| <i>c</i> (Å)                                 | 25.439(2)                  | 19.406(2)                 | 16.3971(9)              | 32.344(3)           |
| $\alpha$ (deg)                               | 90                         | 65.934(4)                 | 90                      | 90                  |
| $\beta$ (deg)                                | 108.204(3)                 | 84.261(6)                 | 110.354(3)              | 108.287(6)          |
| $\gamma(\text{deg})$                         | 90                         | 89.170(4)                 | 90                      | 90                  |
| $V(Å^3)$                                     | 4297.7(5)                  | 2817.8(4)                 | 1918.4(2)               | 6701(1)             |
| $D_{\text{calcd}}, (g \cdot \text{cm}^{-3})$ | 1.414                      | 1.352                     | 1.707                   | 1.206               |
| $\mu$ (mm <sup>-1</sup> )                    | 2.253                      | 2.057                     | 4.956                   | 0.483               |
| F(000)                                       | 1888                       | 1192                      | 976                     | 2560                |
| no. of obsd reflns                           | 5883                       | 6521                      | 2728                    | 4336                |
| no. of params refnd                          | 493                        | 595                       | 220                     | 394                 |
| goodness of fit                              | 1.053                      | 1.098                     | 1.020                   | 1.069               |
| $R_1$ (I>2 $\sigma$ )                        | 0.0545                     | 0.0855                    | 0.0305                  | 0.0490              |
| $wR_2(I>2\sigma)$                            | 0.1657                     | 0.2007                    | 0.0705                  | 0.1232              |

Table S1. Selected crystallographic data for compounds 1-4.

|                                              | 5            | 6                      | 7                      | 8                      |
|----------------------------------------------|--------------|------------------------|------------------------|------------------------|
| Empirical formula                            | C25H26BrFeN3 | $C_{32} H_{33} Fe N_3$ | $C_{21}H_{19}FeN_3O_3$ | $C_{22}H_{19}FeN_3O_4$ |
| FW (g·mol <sup>-1</sup> )                    | 504.25       | 515.46                 | 417.24                 | 445.25                 |
| Crystal system                               | Triclinic    | Triclinic              | Monoclinic             | Monoclinic             |
| Space Group                                  | P-1          | P-1                    | $P2_1/n$               | $P2_1/c$               |
| Ζ                                            | 2            | 2                      | 4                      | 4                      |
| a (Å)                                        | 8.041(2)     | 9.2244(9)              | 15.764(2)              | 12.795(1)              |
| <i>b</i> (Å)                                 | 10.612(2)    | 9.846(1)               | 8.828(1)               | 13.232(1)              |
| <i>c</i> (Å)                                 | 14.202(3)    | 15.696(1)              | 16.118(2)              | 12.3477(9)             |
| $\alpha$ (deg)                               | 103.803(7)   | 94.162(4)              | 90                     | 90                     |
| $\beta$ (deg)                                | 96.614(8)    | 104.009(4)             | 118.981(6)             | 94.594(4)              |
| $\gamma(\text{deg})$                         | 91.387(8)    | 96.291(4)              | 90                     | 90                     |
| $V(Å^3)$                                     | 1167.4(4)    | 1367.5(2)              | 1962.3(5)              | 2083.8(3)              |
| $D_{\text{calcd}}, (g \cdot \text{cm}^{-3})$ | 1.434        | 1.252                  | 1.412                  | 1.419                  |
| $\mu$ (mm <sup>-1</sup> )                    | 2.373        | 0.576                  | 0.795                  | 0.757                  |
| F(000)                                       | 516          | 544                    | 864                    | 920                    |
| no. of obsd reflns                           | 2326         | 4338                   | 3381                   | 3689                   |
| no. of params refnd                          | 274          | 328                    | 256                    | 274                    |
| goodness of fit                              | 0.986        | 1.012                  | 1.067                  | 1.016                  |
| $R_1(I \ge 2\sigma)$                         | 0.0495       | 0.0445                 | 0.0378                 | 0.0329                 |
| $wR_2(I>2\sigma)$                            | 0.1011       | 0.0838                 | 0.0961                 | 0.0747                 |

 Table S2. Selected crystallographic data for compounds 5–8.



Figure S1. <sup>1</sup>H NMR (600 MHz, C<sub>6</sub>D<sub>6</sub>) spectrum of [FeBr(HL)(HMDS)] (2).



Figure S2. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) spectrum of [FeBr<sub>2</sub>(HL)] (3).



Figure S3. <sup>1</sup>H NMR (600 MHz,  $C_6D_6$ ) spectrum of FeL<sub>2</sub> (4).



**Figure S4.** <sup>1</sup>H NMR (600 MHz,  $C_6D_6$ ) spectrum of [FeBnBr(HL)] (5). Note: the poor quality of the spectrum is due to low solubility.



Figure S5. <sup>1</sup>H NMR (600 MHz,  $C_6D_6$ ) spectrum of [Fe(Bn)<sub>2</sub>(HL)] (6).



Figure S6. <sup>1</sup>H NMR (600 MHz,  $CD_2Cl_2$ ) spectrum of [Fe(CO)<sub>3</sub>(HL)] (7).



Figure S7. <sup>13</sup>C NMR (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>) spectrum of [Fe(CO)<sub>3</sub>(HL)] (7).



Figure S8. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) spectrum of dibenzyl ketone.



Figure S9. <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) spectrum of dibenzyl ketone.



Figure S10. <sup>1</sup>H NMR (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>) spectrum of [Fe(CO)<sub>4</sub>(HL)] (8).



Figure S11. <sup>13</sup>C NMR (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>) spectrum of [Fe(CO)<sub>4</sub>(HL)] (8).

# 3. IR spectra



Figure S12. IR spectrum of [Fe(CO)<sub>3</sub>(HL)] (7) as a neat solid.



Figure S13. IR spectra of [Fe(CO)<sub>4</sub>(HL)] (8): neat solid sample (top) and solution (bottom).

### 4. C-C coupling reaction

#### Scheme S1. C–C bond formation reaction.



Figure S14. GC trace of the CC bond formation reaction mixture run 1. Retention times:  $C_6Me_6$  9.048 min, I 10.460 min, II 12.249 min, III 14.039 min. 1.6 mg of  $C_6Me_6$  was used as internal standard.



Figure S14. GC trace of the CC bond formation reaction mixture run 2. Retention times:  $C_6Me_6$  9.045 min, I 10.455 min, II 12.249 min, III 14.076 min. 2.6 mg of  $C_6Me_6$  was used as internal standard.

## Yield Calculations for run 1:

Compound 6 (17.7mg, 34.4 µmol), p-methoxybenzyl bromide (5 µL, 34.3 µmol), C<sub>6</sub>Me<sub>6</sub> (1.6 mg, 9.9 µmol)



Conversion of *p*-methoxybenzyl bromide: 49% + 26% = 75%

## Yield Calculations for run 2:

Compound 6 (17.7mg, 34.4 µmol), p-methoxybenzyl bromide (5 µL, 34.3 µmol), C<sub>6</sub>Me<sub>6</sub> (2.6 mg, 16.0 µmol)



Conversion of *p*-methoxybenzyl bromide: 49% + 29% = 78%

Average yield of I = (36% + 33%)/2 = 35%

Average yield of II = (49%+49%)/2 = 49%

Average yield of III = (26%+29%)/2 = 28%

Average conversion of *p*-methoxybenzyl bromide = (75%+78%)/2 = 77%

# 5. References:

- 1. Apex 2 Software Package; Bruker AXS Inc., Madison, WI, 2013. 6.
- 2. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
- 3. http://shelx.uni-ac.gwdg.de/SHELX/index.php (accessed on July 4, 2013 and September 4, 2015).
- 4. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.