Supplementary Information

Improvement of hydrogen storage property of three-component Mg(NH₂)₂-LiNH₂-LiH composites by additives

Huai-Jun Lin^{a, *}, Hai-Wen Li^{a, c}, Biswajit Paik^a, Jianhui Wang^{a, d} and Etsuo Akiba^{a, b, c}

^a International Research Center for Hydrogen Energy, Kyushu University, Fukuoka, Japan

^b Department of Engineering, Kyushu University, Fukuoka, Japan

^c International Institute of Carbon-Neutral Energy Research (WPI-I²CNER), Kyushu University, Fukuoka, Japan

^d Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan

* Corresponding author: <u>lin.huaijun.916@m.kyushu-u.ac.jp</u>

	Value for $t/t_{0.5}$								Mg(NH ₂) ₂ - LiNH ₂ -4LiH		Mg(NH ₂) ₂ - LiNH ₂ - 3.9LiH-0.1KH		
α	$D_1(\alpha)$	$D_2(\alpha)$	D ₃ (α)	$D_4^{}(\alpha)$	$F_{l}(\alpha)$	$R_2(\alpha)$	$R_{3}(\alpha)$	$A_2(\alpha)$	$A_{3}(\alpha)$	140°C	180°C	140°C	180°C
0.1	0.040	0.033	0.028	0.032	0.152	0.174	0.165	0.390	0.533	0.20	0.24	0.66	0.63
0.2	0.160	0.140	0.121	0.135	0.322	0.362	0.349	0.567	0.685	0.38	0.44	0.76	0.75
0.3	0.360	0.328	0.295	0.324	0.515	0.556	0.544	0.717	0.801	0.58	0.59	0.83	0.84
0.4	0.640	0.609	0.576	0.595	0.737	0.768	0.762	0.858	0.903	0.78	0.79	0.90	0.92
0.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.00	1.00	1.00	1.00
0.6	1.440	1.521	1.628	1.541	1.322	1.253	1.277	1.150	1.097	1.22	1.45	1.04	1.07
0.7	1.960	2.207	2.568	2.297	1.737	1.543	1.607	1.318	1.198	1.51	2.31	1.12	1.14
0.8	2.560	3.115	4.051	3.378	2.322	1.887	2.014	1.524	1.322	1.96	4.00	1.35	1.24
0.9	3.240	4.363	6.747	5.028	3.322	2.334	2.602	1.822	1.492	3.28	8.65	1.95	1.49

Table S1 Values of various functions of α in some commonly used reaction equations together with those extracted from Mg(NH₂)₂-LiNH₂-4LiH and the Mg(NH₂)₂-LiNH₂-3.9LiH-0.1KH samples.

Mg(NH ₂) ₂	LiNH ₂	LiH	KH
1	1	4	
1	1	3.9	0.1
2	1	4	_
2	1	3.9	0.1
1	2	4	_
1	2	3.9	0.1
1	1	5	—
1	1	4.9	0.1
2	1	5	_
2	1	4.9	0.1
1	2	5	—
1	2	4.9	0.1
1	1	6	_
1	1	5.9	0.1
2	1	6	_
2	1	5.9	0.1
1	2	6	_
1	2	5.9	0.1

Table S2 selected compositions of the $Mg(NH_2)_2$ -LiNH₂-LiH system in this study.

Fig. S1 experimental PCIs of the Mg(NH₂)₂-LiNH₂-4LiH and Mg(NH₂)₂-LiNH₂-3.9LiH-0.1KH samples at 180°C. The hysteresis of the PCIs is significantly reduced to 0.82MPa for the Mg(NH₂)₂-LiNH₂-3.9LiH-0.1KH sample compared with 2.78MPa for the Mg(NH₂)₂-LiNH₂-4LiH sample.

Fig. S2 DSC traces of (a) Mg(NH₂)₂-LiNH₂-4LiH and (b) Mg(NH₂)₂-LiNH₂-3.9LiH-0.1KH samples at different heating rates. (c) Kissinger's plots for the above two samples.

Fig. S3 Evolution of (a) XRD patterns and (b) Raman spectra of the Mg(NH₂)₂-LiNH₂-4LiH composite during dehydrogenation.

Fig. S4 XRD patterns of (a) 1st cycled and (b) 12th cycled Mg(NH₂)₂-LiNH₂-3.9LiH-0.1KH, and (c) 12th cycled Mg(NH₂)₂-LiNH₂-4LiH, all in hydrogenated state.