## Synthesis of a Highly Reactive Form of WO<sub>2</sub>Cl<sub>2</sub>, its Conversion into Nanocrystalline Mono-Hydrated WO<sub>3</sub> and Coordination Compounds with Tetramethylurea

Marco Bortoluzzi, Claudio Evangelisti, Fabio Marchetti, Guido Pampaloni, Fabio Piccinelli, Stefano Zacchini

## **Supporting Information**

| Table of contents                                                                                                           | Page       |
|-----------------------------------------------------------------------------------------------------------------------------|------------|
| Figure S1. P-XRD patterns of orthorhombic WO <sub>2</sub> Cl <sub>2</sub> , yellow WO <sub>2</sub> Cl <sub>2</sub> and grey | S2         |
| WO <sub>2</sub> Cl <sub>2</sub>                                                                                             |            |
| Figure S2. Representative HR-TEM micrograph of yellow WO <sub>2</sub> Cl <sub>2</sub>                                       | S3         |
| Figure S3. Comparative view of P-XRD patterns                                                                               | S4         |
| Figure S4. Representative micrograph and selected area electron diffraction (SAED)                                          | S5         |
| pattern of light green WO <sub>3</sub> ·H <sub>2</sub> O (from grey WO <sub>2</sub> Cl <sub>2</sub> )                       |            |
| Figure S5. Representative HR-TEM micrograph of lemon yellow WO <sub>3</sub> ·H <sub>2</sub> O (from                         | <b>S</b> 6 |
| yellow WO <sub>2</sub> Cl <sub>2</sub> )                                                                                    |            |
| Table S1. Computed average Mayer bond orders (C-PCM/ $\omega$ B97X) for the W–O                                             | S7         |
| interactions in 1                                                                                                           |            |
| Figure S6. DFT C-PCM/00B97X calculated structure of 2                                                                       | <b>S</b> 8 |

**Figure S1**. P-XRD patterns of: orthorhombic WO<sub>2</sub>Cl<sub>2</sub> (space group *Immm*; simulated from PDF 01-081-2322, red line); commercial yellow WO<sub>2</sub>Cl<sub>2</sub> (black line); grey WO<sub>2</sub>Cl<sub>2</sub> protected from the moisture with a thin layer of inert paraffin oil (blue line).



The *blue line* pattern has been cut in the 10-20° 29 range, due to the presence of a very broad peak ascribable to the paraffin oil. The paraffin oil is responsible also for the broadened profile of the diffraction peaks.

Figure S2. Representative HRTEM micrograph of commercial (yellow) WO<sub>2</sub>Cl<sub>2</sub>.



**Figure S3.** Comparative view of the P-XRD patterns of the solid materials obtained from: grey  $WO_2Cl_2$ , after air exposure for 3 days (red line); grey  $WO_2Cl_2$ , after air exposure for 10 minutes (black line); yellow  $WO_2Cl_2$ , after air exposure for 3 days (blue line).



**Figure S4.** Representative micrograph (left side) and selected area electron diffraction (SAED) pattern (right side) of  $WO_3 \cdot H_2O$  (light green solid, from hydrolysis of grey  $WO_2Cl_2$ ).



**Figure S5.** Representative HRTEM micrograph of WO<sub>3</sub>·H<sub>2</sub>O (lemon yellow solid, from hydrolysis of commercial yellow WO<sub>2</sub>Cl<sub>2</sub>).



Table S1. Computed average Mayer bond orders (C-PCM/ $\omega$ B97X) for the W–O interactions in 1.

| W=O(terminal) | 1.933 |
|---------------|-------|
| W=O(bridging) | 1.444 |
| W–O(bridging) | 0.310 |
| W–O(tmu)      | 0.507 |



**Figure S6.** DFT C-PCM/ $\omega$ B97X calculated structure of WO<sub>2</sub>Cl<sub>2</sub>(tmu)<sub>2</sub>, **2**. Dichloromethane as implicit solvent.



Table S2. Selected computed bond lengths (Å) and angles (°) for WO<sub>2</sub>Cl<sub>2</sub>(tmu)<sub>2</sub>, 2.

| Bond |       | Angle  |       |
|------|-------|--------|-------|
| W=O  | 1.686 | O=W=O  | 102.2 |
|      | 1.690 | O=W-O  | 90.3  |
| W–O  | 2.213 |        | 90.9  |
|      | 2.185 |        | 166.8 |
| W–Cl | 2.398 |        | 167.4 |
|      | 2.399 | O=W-Cl | 95.2  |
| C=O  | 1.271 |        | 96.2  |
|      | 1.272 |        | 95.7  |
|      |       |        | 95.2  |
|      |       | C=O-W  | 134.7 |
|      |       |        | 140.6 |