Supplementary InformationNoveldinitromethyl-featured

polynitro

energetic salts

Ying Li^{ab}, Haifeng Huang^b, Xiangyang Lin^{a*}, Renming Pan^a, Jun Yang^{b*}

^aSchool of Chemical Engineering, Nanjing University of Science and Technology,

Xiaolingwei 200, Nanjing, Jiangsu, China. E-mail: linxiangyang@njust.edu.cn;

^bShanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Ling Ling Road 345,

Shanghai, China. E-mail: yangj@sioc.ac.cn.

X-ray crystallography

The relevant data and parameters for the X-ray measurements and refinements of the salt **5** are summarized in Table S1.

 Table S1 Crystallographic data for salt 5 1.5H2O

	5 ·1.5H ₂ O		
CCDC	1484784		
Formula	$C_{10}H_{24}N_{18}O_{21}$		
FW (g mol-1)	732.47		
Temperature (K)	293(2)		
Crystal system	Triclinic		
Space group	P -1		
Ζ	2		
a (Å)	6.8808(18)		
<i>b</i> (Å)	13.354(3)		
<i>c</i> (Å)	15.942(4)		
α (°)	89.832(6)		
β (°)	81.391(6)		
γ (°)	75.199(6)		
$V(Å^3)$	1399.3(6)		
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.738		
μ (mm ⁻¹)	0.167		
<i>F</i> (000)	756		
θ (°)	1.578-25.000		
Refl. coll.	7773		
Independ. refl. [R _{int}]	4926 [0.0376]		
S	1.021		
$R_1, wR_2 [I > 2s(I)]$	0.0693, 0.1579		
R_1, wR_2 (all)	0.1098, 0.1805		

Theoretical study

Heat of formation

Based on the Born-Haber energy cycle, the heat of formation of a salt can be simplified according to Equation (1), where ΔH_L is the lattice energy of the salt.

 $\Delta H_{\rm f}^{\rm o}(\text{ionic salt}, 298\text{K}) = \Delta H_{\rm f}^{\rm o}(\text{cation}, 298\text{K}) + \Delta H_{\rm f}^{\rm o}(\text{anion}, 298\text{K}) - \Delta H_{\rm L}$ (1)

The $\Delta H_{\rm L}$ value could be predicted by the formula suggested by Jenkins et al [Eq. (2)],^[1] where $U_{\rm POT}$ is the lattice potential energy and $n_{\rm M}$ and $n_{\rm X}$ depend on the nature of the ions M^{p+} and X^{q-}, respectively, and are equal to three for monoatomic ions, five for linear polyatomic ions, and six for nonlinear polyatomic ions.

 $\Delta H_{\rm L} = U_{\rm POT} + [p({\rm n_M}/2 - 2) + q({\rm n_X}/2 - 2)]RT$

(2)

The equation for the lattice potential energy, U_{POT} , takes the form of Equation (3), where ρ_m is the density (g cm⁻³), M_m is the chemical formula mass of the ionic material (g), and the coefficients γ (kJ⁻¹ mol⁻¹ cm) and δ (kJ⁻¹ mol⁻¹) are assigned literature values.^[1] U_{POT} (kJ⁻¹mol⁻¹) = γ (ρ_m/Mm)^{1/3} + δ (3)

Compounds	$E_0^{\mathbf{a}}$	ZPE ^b	$H_{\mathrm{T}}^{\mathrm{c}}$	HOF ^d
	(Hartree)	(Hartree)	(Hartree)	(kJ/mol)
CH ₄	-40.39849	0.044793	0.003812	-74.6 ^[2a]
NH ₃	-56.43418	0.034372	0.003818	-45.9 ^[2a]
CH ₃ CH ₃	-79.60944	0.074599	0.004428	-83.8 ^[2b]
CH ₃ NO ₂	-244.5544	0.049856	0.005273	-74.3 ^[2a]
CH ₃ NH ₂	- 95.63188	0.064032	0.004369	-23.0 ^[2d]
FOX-7	-597.2172	0.091946	0.010218	-134.1 ^[2*]
Urea	-224.8302	0.062316	0.005299	-235.5 ^[2a]
CH ₃ CH ₂ -	-78.92410	0.057501	0.004496	133.1 ^[2a]
ATNP Anion	-1157.362	0.121910	0.017947	-543.1

Table S2 Ab Initio computational data

^a Total energy (*E*₀) calculated by B3LYP/6-31+G**/MP2/6-311++G** method (Hartree/Particle);

^b Zero-point correction (ZPE) (Hartree/Particle); ^c Values of thermal correction (H_T) (Hartree/Particle); ^d Heat of formation (HOF) (kJ/mol).

Energetic properties

Detonation pressures (*P*) and detonation velocities (*D*) were calculated according to the Kamlet-Jacobs equations (Eq. 4 and 5),^[3]

$$D = 1.01(N M^{1/2} Q^{1/2})^{1/2} (1 + 1.30\rho)$$
(4)

$$P = 1.558\rho^2 \,\overline{M} \,{}^{1/2} \,Q^{1/2} \tag{5}$$

For compound with the molecular formula of $C_aH_bO_cN_d$, $c\geq 2a+b/2$ (suitable for the salt 1 in this study), Q can be calculated according to Eq. 6.

$$Q = \frac{28.9b + 94.05a + 0.239\Delta H_f^0}{M} \times 10^3$$
(6)

For compound with the molecular formula of $C_aH_bO_cN_d$, $2a+b/2>c\geq b/2$ (suitable for all the salts in this study except 1), Q can be calculated according to Eq. 7.

$$Q = \frac{28.9b + 94.05(\frac{c}{2} - \frac{b}{4}) + 0.239\Delta H_f^0}{M} \times 10^3$$
(7)

where each term in Eq. 4, 5, 6 and 7 is defined as follows: *D*, the detonation velocity (km s⁻¹); *P*, the detonation pressure (GPa); *N*, the moles of detonation gases per gram explosive; \overline{M} , the average molecular weight of these gases (g mol⁻¹); *Q*, the heat of detonation (J g⁻¹); *M*, molecular weight of the compound (g mol⁻¹); and ρ , the loaded densities of explosives (g cm⁻³). Density measured by gas pycnometer at 25°C.

^[1] H. D. B. Jenkins, D. Tudela and L. Glasser, Inorg. Chem., 2002, 41, 2364-2367.

^{[2] (}a) Z. Zeng, H. Gao, B. Twamley and J. M. Shreeve, *J. Mater. Chem.*, 2007, **17**, 3819-3826; (b)
C. Ye, H. Gao, B. Twamley and J. M. Shreeve, *New. J. Chem.*, 2008, **32**, 317-322; (c) From NIST webbook. (d) T. T. Vo and J. M. Shreeve, *J. Mater. Chem. A*, 2015, **3**, 8756-8763.

^{[3] (}a) M. J. Kamlet and S. J. Jacobs, *J. Chem. Phys*, 1968, 48, 23-35; (b) M. J. Kamlet and J. E. Ablard, *J. Chem. Phys.*, 1968, 48, 36-42; (c) M. J. Kamlet and C. Dicknison, *J. Chem. Phys.*, 1968, 48, 43-49; (d) H. Gao, C. Ye, C. Piekarski and J. M. Shreeve, *J. Phys. Chem.*, C, 2007, 111(28), 10718-10731.