Electronic Supplementary Information

Modulate the relaxation dynamics of linear-shaped tetranuclear rare-earth clusters through utilizing different solvents

Ru-Xia Zhang, Yi-Xin Chang, Hai-Yun Shen, Wen-Min Wang, Xiao-Pu Zhou, Ni-Ni Wang,

Jian-Zhong Cui* and Hong-Ling Gao*

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Scheme S1. The synthesis route for HL.

Fig S1. The ¹H NMR spectrum of 2-[(2-(hydroxyimino)-propanehydrazide)methyl]-8-hydroxyquinoline.

^{*} Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China. E-mail: <u>cuijianzhong@tju.edu.cn</u>

^{*} Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China. E-mail: ghl@tju.edu.cn

Fig S2. The experimental and simulated PXRD patterns of complexes 1–9.

Fig S3. TG curves of complexes.

Fig S4. UV-vis absorption spectra of complexes 1–9, HL and Dy(dbm)₃ 2H₂O.

Fig S5. The luminescent spectra of HL, complexes 1 and 6.

Fig S6. (a) The luminescent spectra of Dy(dbm)₃·2H₂O, complexese 3 and 8; (b) The luminescent spectra of Tb(dbm)₃·2H₂O,

complex 2 and 7.

Fig S7. Temperature dependence of the *ac* susceptibility for complex 2 as a function of the temperature below 20 K under an oscillating *ac* field of 3 Oe.

Fig S8. Temperature dependence of the ac susceptibility for complex 7 as a function of the temperature below 20 K under an

oscillating ac field of 3 Oe.

Complex	1	2	3	4	5	6	7	8	9
RE1-O4	2.288(4)	2.316(8)	2.280(2)	2.294(3)	2.261(2)	2.222(8)	2.303(5)	2.3165(16)	2.2754(15)
RE1-O5	2.299(4)	2.329(8)	2.307(2)	2.306(3)	2.289(2)	2.260(8)	2.304(5)	2.3272(15)	2.2843(15)
RE1-O2	2.300(4)	2.312(8)	2.338(2)	2.313(3)	2.318(2)	2.286(9)	2.352(5)	2.3082(15)	2.3348(15)
RE1-012	2.336(4)	2.335(9)	2.356(2)	2.343(3)	2.344(2)	2.307(8)	2.460(5)	2.4215(16)	2.4328(16)
RE1-O1	2.341(3)	2.357(7)	2.386(2)	2.343(3)	2.367(2)	2.342(8)	2.400(5)	2.3573(15)	2.3704(15)
RE101#1	2.367(3)	2.370(7)	2.3759(19)	2.366(3)	2.357(2)	2.341(8)	2.368(5)	2.4392(15)	2.3535(15)
RE1-N1	2.441(4)	2.467(9)	2.471(2)	2.448(4)	2.448(3)	2.435(10)	2.461(6)	2.4665(18)	2.4479(17)
RE1-N2	2.535(4)	2.569(9)	2.532(2)	2.527(4)	2.516(3)	2.506(9)	2.544(7)	2.5430(18)	2.5121(18)
RE1-RE1#1	3.8112(9)	3.8600(10)	3.8392(4)	3.8210(4)	3.8165(3)	3.7777(11)	3.8894(8)	3.8277(4)	3.8519(2)
RE2-07	2.264(4)	2.293(9)	2.325(2)	2.275(3)	2.311(3)	2.270(10)	2.319(6)	2.3214(16)	2.2949(16)
RE2-08	2.298(3)	2.310(8)	2.315(2)	2.311(3)	2.293(2)	2.258(8)	2.288(6)	2.2933(16)	2.2673(17)
RE2011	2.303(4)	2.311(8)	2.302(2)	2.303(3)	2.284(2)	2.242(8)	2.351(5)	2.3201(15)	2.3179(16)
RE2010	2.313(4)	2.336(9)	2.356(2)	2.316(3)	2.349(3)	2.298(9)	2.312(5)	2.2999(15)	2.2915(16)
RE2-06	2.318(4)	2.349(8)	2.304(2)	2.329(3)	2.285(2)	2.274(9)	2.326(5)	2.2954(15)	2.3040(16)
RE209	2.383(3)	2.413(8)	2.348(2)	2.396(3)	2.334(2)	2.300(9)	2.436(6)	2.3514(15)	2.4151(16)
RE2–N4	2.534(5)	2.555(10)	2.532(3)	2.529(4)	2.513(3)	2.477(10)	2.521(7)	2.5629(19)	2.5024(19)
RE2–N3	2.545(4)	2.575(9)	2.540(2)	2.539(4)	2.520(3)	2.479(10)	2.563(7)	2.5872(18)	2.5445(18)
O4-RE1-O5	71.94(13)	71.2(3)	72.58(7)	72.32(11)	73.37(8)	73.7(3)	72.69(19)	72.76(6)	73.08(6)
O4-RE1-O2	90.87(13)	89.7(3)	96.26(8)	90.59(11)	96.86(9)	96.0(3)	89.9(2)	89.11(6)	90.34(6)
O5-RE1-O2	79.85(13)	79.7(3)	82.58(7)	79.23(11)	81.64(8)	80.8(3)	84.92(19)	86.81(5)	83.94(6)
O4-RE1-O12	141.77(13)	142.8(3)	140.71(7)	142.03(12)	140.37(8)	140.4(3)	146.61(19)	143.76(5)	146.55(6)
O5-RE1-O12	144.57(13)	143.7(3)	145.83(7)	143.39(12)	145.36(8)	144.6(3)	138.02(19)	143.47(5)	137.69(6)
O2-RE1-O12	87.55(15)	86.7(3)	85.26(8)	86.75(13)	85.44(9)	85.2(3)	82.22(18)	93.10(6)	82.50(6)
O4-RE1-O1	93.16(12)	94.5(3)	88.89(7)	93.61(11)	88.67(9)	90.0(3)	91.58(19)	104.01(5)	91.82(6)
O5-RE1-O1	89.06(12)	90.6(3)	88.29(7)	89.59(10)	88.05(8)	87.9(3)	83.93(19)	89.04(5)	83.84(5)
O2-RE1-O1	166.40(12)	167.6(3)	167.65(7)	166.26(10)	166.34(8)	165.2(3)	167.75(18)	164.40(5)	166.39(5)
O12-RE1-O1	97.20(13)	96.8(3)	97.87(7)	97.83(12)	98.26(8)	98.8(3)	102.85(18)	81.37(5)	102.72(5)
O4-RE1-O1#1	141.97(12)	141.3(3)	142.13(7)	142.26(11)	142.17(8)	142.2(3)	144.14(18)	144.40(5)	144.39(6)
O5-RE1-O1#1	73.02(12)	73.4(3)	74.12(7)	73.07(10)	73.64(8)	72.4(3)	74.56(18)	71.67(5)	74.31(5)
O2-RE1-O1#1	97.13(12)	99.1(3)	96.85(7)	97.35(10)	96.17(8)	94.9(3)	101.38(18)	90.29(5)	100.11(5)

 Table S1. Selected bond lengths and angles for complexes 1–9

symmetry	transformations	used	to	generate	equivalent	atoms:	#1	-x+1,	-y+1, -z+1.
O6-RE2-O9	132.50(13)	132.5(3)	138.05(8)	132.81(11)	137.44(9)	138.7(3)	132.50(19)	139.22(6)	132.63(6)
O10-RE2-O9	73.86(13)	74.9(3)	72.38(9)	73.91(11)	72.48(9)	71.9(4)	71.76(19)	78.15(5)	71.67(6)
O11-RE2-O9	130.94(13)	131.1(3)	125.67(8)	131.14(11)	125.59(9)	125.8(3)	129.18(18)	127.03(6)	129.09(6)
O8-RE2-O9	71.04(13)	71.0(3)	72.11(8)	71.37(11)	72.67(8)	72.8(3)	71.5(2)	72.47(6)	72.01(6)
O7-RE2-O9	75.73(14)	75.6(3)	74.29(9)	75.41(12)	73.77(10)	74.5(4)	70.81(19)	75.02(6)	70.72(6)
O10-RE2-O6	147.20(14)	146.2(3)	144.72(8)	146.95(11)	145.27(9)	145.0(3)	152.45(19)	140.96(5)	152.09(6)
O11-RE2-O6	75.10(13)	74.4(3)	74.80(8)	74.66(12)	74.75(9)	73.9(3)	81.04(18)	73.93(6)	80.19(6)
08-RE2-06	74.81(13)	73.8(3)	79.57(8)	74.50(11)	78.37(9)	79.2(3)	85.3(2)	82.03(6)	83.92(6)
07-RE2-06	73.02(14)	72.8(3)	71.92(8)	73.07(12)	72.55(9)	72.7(4)	71.74(19)	71.71(5)	72.38(6)
O11-RE2-O10	72.17(13)	71.9(3)	71.08(8)	72.39(11)	71.75(9)	72.5(3)	71.88(19)	71.93(5)	72.35(6)
O8-RE2-O10	103.46(14)	105.6(3)	100.96(8)	104.08(12)	102.11(9)	102.2(3)	93.0(2)	107.13(6)	93.94(6)
O7-RE2-O10	139.39(14)	140.6(3)	143.37(9)	139.63(12)	142.17(9)	142.3(4)	135.6(2)	145.12(5)	135.34(6)
O8-RE2-O11	83.70(13)	84.5(3)	77.00(8)	83.76(11)	76.39(8)	76.4(3)	76.2(2)	75.98(6)	75.84(6)
O7-RE2-O11	147.93(14)	147.1(3)	143.53(8)	147.62(12)	144.37(9)	143.6(3)	152.46(19)	142.83(5)	152.21(6)
O7-RE2-O8	91.27(14)	88.6(3)	82.70(8)	90.14(12)	83.51(9)	83.5(3)	97.0(2)	85.58(6)	96.55(6)
O1-RE1-O1#1	71.90(13)	70.5(3)	72.54(8)	71.52(11)	72.21(9)	72.5(3)	70.70(19)	74.13(6)	70.75(6)
O12-RE1-O1#1	75.92(12)	75.7(3)	75.81(7)	75.47(11)	76.00(8)	76.6(3)	69.17(18)	71.80(5)	68.99(5)

 Table S2. The parameters obtained from Cole-Cole plots using the Debye model.

Slow Relaxation (SR)						
<i>T /</i> K	χ1	χ2	α			
2	3.11053	11.38135	0.39272			
3	2.95191	8.15161	0.32036			
4	2.63245	6.56515	0.28281			
5	2.30308	5.54867	0.27096			
6	2.04253	4.65953	0.24435			
7	1.88189	4.02818	0.21125			
8	1.74185	3.67406	0.18438			
9	1.66481	3.21445	0.11875			
10	1.49129	2.94716	0.15951			
11	1.42416	2.68253	0.12803			

^a Fitting function

 $y = 0.5*(\chi_1-\chi_2)/tan((1-\alpha)*1.5707) + sqrt((x-\chi_1)*(\chi_2-x)+0.25*(\chi_2-\chi_1)^2/(tan((1-\alpha)*1.5707))^2)$