A scalable in-situ surfactant-free synthesis of uniform MnO/graphene

composite for highly reversible lithium storage

Wenlong Cai^b, Gaoran Li^c, Kailong Zhang^b, Jianbin Zhou^b, Yitai Qian^b, Jin Du^a*

- Graduate school and Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, P.R. China.
 Tel: +86-551-63602922; E-mail: dujindj@ustc.edu.cn;
- b. Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P.R. China.
- c. Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada

Figure S1. SEM image of the Mn₃O₄/graphene oxide

The uniform Mn_3O_4 nanowire were uniformly adhered on the surface of grapheme oxide and no big agglomeration. After calcining, it transformed to spherical MnO.

Figure S2. TG curve of the MnO/grapheme composite.

The weight change between 200 to 1000 0 C is owing to both the oxidation of MnO and the combustion of reduced grapheme. Among this temperature range, in addition to C + O₂ = CO₂, a reaction also occurs from the reference we learn it as : MnO + O₂ = Mn₂O₃.[B. Liu, X. Hu, H. Xu, W. Luo, Y. Sun, Y. Huang, Sci. rep., 2014, 4: 4229.] Based on the theoretical value (11.3 wt. %) of the weight increase from MnO to Mn₂O₃, the content of the MnO in the product is evaluated to be about 74.2 wt. %.

Figure S3. The SEM image of the MnO/graphene composite.

Figure S4. The SEM image and the corresponding element mapping. Scar bar 5 $\mu m.$

Figure S5. The SAED pattern of MnO in the MnO/graphene hybrid material.

Figure S6. Cycling performance of MnO/graphene electrode at a current density of 0.2 A $g^{\text{-}1}$ during the first 50 cycles.

Figure S7. Nyquist plots of MnO/graphene electrode before cycling and charge state after 50 cycles at 0.2 A g⁻¹, and the corresponding simulation results.

Figure S8. (a) TEM image, (b) SEM image and (c) XRD pattern of the MnO/grapheme composite charged to 3V after 50 cycles at a current density of 2 A g^{-1} .