Supporting Information

Flexible crystals of perovskite-like coordination polymers with tunable and switchable organic guest: (CH₃NH₃)₂[KFe(CN)₆] and (CH₃NH₃)₂[KCo(CN)₆]

Joanna Kinga Prytys¹, Magdalena Rok^{1*}, Vasyl Kinzhybalo², Grażyna Bator¹

- ¹ Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland,
- ² Institute of Low Temperature and Structure Research, Polish Academy of Science, Okólna 2, PO Box 937, 50-950 Wroclaw, Poland

Caption of tables

Table 1S. Summary of crystal data and structural refinements for $(CH_3NH_3)_2[KCo(CN)_6]$ at 100 and 443K temperatures.

Table 2Sa. Experimental bond lengths and angles for $(CH_3NH_3)_2[KCo(CN)_6]$ in LT phase. (Å, °)

Table 2Sb. Experimental bond lengths and angles for $(CH_3NH_3)_2[KCo(CN)_6]$ in HT phase. (Å, °)

Table 3S. Hydrogen bonds and short contacts for $(CH_3NH_3)_2[KCo(CN)_6]$ (1) and $(CH_3NH_3)_2[KCo(CN)_6]$ (2) in LT and HT phases.

Table 4S. Thermodynamic parameters of the phase transition for 1 and 2 in the condensed state.

Caption of figures

Fig. 1S. TGA and DTA thermograms between 300 and 900 K for (a) $(CH_3NH_3)_2[KCo(CN)_6]$ (1), (b) $(CH_3NH_3)_2[KFe(CN)_6](2)$.

Fig. 2S. The temperature dependence of (a) the real part, ε' , and (b) the imaginary part, ε'' , of the electric permittivity for the pure K₃Co(CN)₆ complex along the [10-1] direction.

Fig. 38. The temperature dependence of (a) the real part, ε' , and (b) the imaginary part, ε'' , of the electric permittivity for the pure K₃Fe(CN)₆ complex along the [10-1] direction.

Fig. 4S. The comparison of a) real and b) imaginary part of permittivity between the pure host $(K_3Fe(CN)_6)$ and the quest-host crystals (2).

Complexes:	(CH ₃ NH ₃) ₂ [KCo(CN) ₆] LT	(CH ₃ NH ₃) ₂ [KCo(CN) ₆] HT
Formula	C ₈ H ₁₂ N ₈ KCo	C ₈ H ₁₂ N ₈ KCo
Formula weight	318.29	318.29
T (K)	100.00	443.15
Crystal system	monoclinic	cubic
Space group	C2/c	Fm-3m
a (Å)	13.626(5)	11.388(18)
<i>b</i> (Å)	7.821(3)	11.388(18)
<i>c</i> (Å)	13.610(5)	11.388(18)
α (°)	90	90
β(°)	108.55(3)	90
γ (°)	90	90
$V(Å^3)$	1375.0(9)	1477.00(7)
Ζ	4	4
Radiation type	Μο Κα	Μο Κα
Crystal size (mm)	0.39 x 0.22 x 0.14	0.33 x 0.32 x 0.2
Diffractometer	Xcalibur, Ruby	Xcalibur, Sapphire 1
θ Range (°)	6.09 to 57.87	6.196 to 52.374
$\rho_{calc}(g \text{ cm}^{-3})$	1.537	1.431
Index ranges	$-14 \le h \le 17$, $-8 \le k \le 10$, $-16 \le 1 \le 18$	$-14 \le h \le 13,$ $-8 \le k \le 14,$ $-14 \le 1 \le 14$
μ (Mo K _{α}) (mm ⁻¹)	1.55	1.440
Absorption correction	Analytical	Analytical
T _{min} , T _{max}	0.760, 0.838	0.665, 0.766
No. of reflections collected	3013	3079
No. of independent reflections	$1562 \\ [B_{12} = 0.0227 \ B_{12} = 0.0279]$	104 [$R_{int} = 0.0241, R_{sigma} = 0.000$
Goodness-of-fit on F^2	$[N_{int} = 0.0227, N_{sigma} = 0.0578]$ 1.065	1.280
Final R_1 , wR_2 indices	$R_1 = 0.0263, wR_2 = 0.0609$	$R_1 = 0.0702, wR_2 = 0.1299$
$[r > 4\sigma r)]$ Final R_1 , wR_2 indices (all data)	$R_1 = 0.0303, wR_2 = 0.0647$	$R_1 = 0.0702, wR_2 = 0.1299$
$\Delta \rho_{ m max, min} (e \text{ Å}^{-3})$	0.25, -0.43	0.75, -0.63

Table 1S. Summary of cry	stal data and structur	ral refinements for	$(CH_3NH_3)_2[KCo(C)]$	N_{6}] at
	100 and 443K 1	emperatures		

Cordinate	Experimental	
(CH ₃ NH ₃) ⁺		
C(4) - N(4)	1.487(3)	
[KC0(CN) ₆] ²⁻		
Co(1) - C(2)	1.9008(18)	
$Co(1) - C(2)^1$	1.9008(18)	
Co(1) - C(1)	1.8986(18)	
$Co(1) - C(1)^1$	1.8986(18)	
$Co(1) - C(3)^1$	1.9073(18)	
Co(1) - C(3)	1.9073(18)	
N(2) - C(2)	1.153(2)	
N(2) - K(1)	2.8536(17)	
N(3) - C(3)	1.154(2)	
$N(3) - K(1)^2$	2.8186(17)	
N(1) - C(1)	1.153(2)	
$N(1) - K(1)^3$	2.8186(17)	
$K(1) - N(2)^4$	2.8535(17)	
$K(1)^5 - N(3)$	2.8846(18)	
$K(1) - N(3)^6$	2.8846(18)	
$K(1) - N(3)^7$	2.8846(18)	
$K(1) - N(1)^8$	2.8186(17)	
$C(2)^1 - Co(1) - C(2)$	180.00(10)	
C(2) - Co(1) - C(3)	89.39(7)	
$C(2)^{1}-Co(1)-C(3)$	90.61(7)	
$C(2) - Co(1) - C(3)^1$	90.61(7)	
$C(2)^1 - Co(1) - C(3)^1$	89.39(7)	
$C(1) - Co(1) - C(2)^1$	89.97(8)	
C(1) - Co(1) - C(2)	90.03(8)	
$C(1)^1 - Co(1) - C(2)^1$	90.03(8)	
$C(1)^1 - Co(1) - C(2)$	89.97(8)	
$C(1)^1 - Co(1) - C(1)$	180.0	
$C(1)^1 - Co(1) - C(3)^1$	91.27(7)	
$C(1) - Co(1) - C(3)^{1}$	88.73(7)	

Table 2Sa. Experimental bond lengths and angles for $(CH_3NH_3)_2[KCo(CN)_6]$ in LT phase. (Å, °)

$C(1) - Co(1) - C(3)^1$	88.73(7)	
C(1) - Co(1) - C(3)	91.27(7)	
$C(3)^1 - Co(1) - C(3)$	180.0	
C(2) - N(2) - K(1)	138.97(12)	
$C(3) - N(3) - K(1)^5$	152.85(13)	
N(2) - C(2) - Co(1)	179.61(16)	
$C(1) - N(1) - K(1)^2$	132.02(13)	
N(1) - C(1) - Co(1)	178.49(16)	
N(3) - C(3) - Co(1)	177.91(15)	
$N(2)^4 - K(1) - N(2)$	169.69(6)	
$N(2) - K(1) - N(3)^7$	78.47(5)	
$N(2)^4 - K(1) - N(3)^7$	107.37(4)	
$N(2)^4 - K(1) - N(3)^6$	78.47(5)	
$N(2) - K(1) - N(3)^6$	107.38(5)	
$N(3)^7 - K(1) - N(3)^6$	113.23(7)	
$N(1)^8 - K(1) - N(2)^4$	96.67(5)	
$N(1)^8 - K(1) - N(2)$	75.80(5)	
$N(1)^3 - K(1) - N(2)$	96.67(5)	
$N(1)^3 - K(1) - N(2)^4$	75.80(5)	
$N(1)^3 - K(1) - N(3)^7$	84.60(5)	
$N(1)^8 - K(1) - N(3)^6$	84.60(5)	
$N(1)^8 - K(1) - N(3)^7$	152.23(4)	
$N(1)^3 - K(1) - N(3)^6$	152.23(4)	
$N(1)^3 - K(1) - N(1)^8$	88.14(7)	
symmetry codes: (1) 1/2-x,1/2-y,-z; (2) 1/2+x,1/2+y,+z; (3) -1/2+x,-1/2+y,+z; (4) -x,+y,1/2-z; (5) 1/2+x, -1/2+y, +z; (6) 1/2-x,1/2+y,1/2-z; (7) -1/2+x,1/2+y,+z; (8) 1/2-x,-1/2+y,1/2-z;		

(Å, °)			
Cordinate	Experimental		
$(CH_{3}NH_{3})^{+}$			
C(2) - N(2)	1.07(6)		
$C(2) - N(2)^{1}$	1.07(6)		
$C(2) - N(2)^2$	1.07(6)		
$C(2) - N(2)^3$	1.07(6)		
$C(2) - N(2)^4$	1.07(6)		
$C(2) - N(2)^5$	1.07(6)		
[KCo(CN) ₆] ²⁻			
Co(1) - C(1)	1.862(11)		
$Co(1) - C(1)^6$	1.862(11)		
$Co(1) - C(1)^7$	1.862(11)		
$Co(1) - C(1)^8$	1.862(11)		
$Co(1) - C(1)^9$	1.862(11)		
$Co(1) - C(1)^{10}$	1.862(11)		
K(1) - N(1)	2.716(12)		
$K(1) - N(1)^{11}$	2.716(12)		
$K(1) - N(1)^{12}$	2.716(12)		
$K(1) - N(1)^{13}$	2.716(12)		
$K(1) - N(1)^{14}$	2.716(12)		
$K(1) - N(1)^{15}$	2.716(12)		
$C(2) - C(2)^{16}$	1.57(10)		
$C(2) - C(2)^{17}$	1.57(10)		
$C(2) - C(2)^{18}$	1.57(10)		
N(1) - C(1)	1.116(16)		
$C(1) - Co(1) - C(1)^3$	90.0		
$C(1)^4 - Co(1) - C(1)^1$	90.000(1)		
$C(1)^4 - Co(1) - C(1)^5$	90.0		
$C(1) - Co(1) - C(1)^4$	180.0		
$C(1) - Co(1) - C(1)^5$	90.0		
$C(1)^3 - Co(1) - C(1)^4$	90.0		
$C(1)^3 - Co(1) - C(1)^1$	90.000(1)		

Table 2Sb. Experimental bond lengths and angles for (CH₃NH₃)₂[KCo(CN)₆]in HT phase.

$C(1) - Co(1) - C(1)^2$	90.000(1)
$C(1)^2 - Co(1) - C(1)^1$	180.0
$C(1)^3 - Co(1) - C(1)^2$	90.0
$C(1)^3 - Co(1) - C(1)^5$	180.0
$C(1)^4 - Co(1) - C(1)^2$	90.0
$C(1)^2 - Co(1) - C(1)^5$	90.0
$C(1) - Co(1) - C(1)^1$	90.0
$C(1)^1 - Co(1) - C(1)^5$	90.000(1)
$N(1) - K(1) - N(1)^{10}$	90.000(2)
$N(1)^9 - K(1) - N(1)^7$	180.0
$N(1)^9 - K(1) - N(1)^6$	90.000(2)
$N(1) - K(1) - N(1)^8$	180.0
$N(1)^{10} - K(1) - N(1)^6$	180.0
$N(1)^{10} - K(1) - N(1)^8$	90.000(1)
$N(1)^8 - K(1) - N(1)^7$	90.0
$N(1)^{10} - K(1) - N(1)^9$	90.000(1)
$N(1) - K(1) - N(1)^6$	90.0
$N(1)^8 - K(1) - N(1)^9$	90.000(1)
$N(1)^8 - K(1) - N(1)^6$	90.000(2)
$N(1) - K(1) - N(1)^6$	90.000(1)
$N(1)^7 - K(1) - N(1)^6$	90.000(1)
$N(1)^{10} - K(1) - N(1)^7$	90.000(2)
$N(1) - K(1) - N(1)^9$	90.0
$C(2)^{11} - C(2) - C(2)^{12}$	60.003(2)
$C(2)^{13} - C(2) - C(2)^{11}$	60.001(1)
$C(2)^{13} - C(2) - C(2)^{12}$	60.001(1)
$N(2)^{15} - C(2) - C(2)^{11}$	144.734(11)
$N(2) - C(2) - C(2)^{12}$	144.734(16)
$N(2)^{15} - C(2) - C(2)^{13}$	144.74(3)
$N(2) - C(2) - C(2)^{11}$	144.734(12)
$N(2)^{14} - C(2) - C(2)^{12}$	144.734(16)
$N(2)^{17} - C(2) - C(2)^{11}$	144.734(11)
$N(2)^{15} - C(2) - C(2)^{12}$	144.734(16)
$N(2)^{18} - C(2) - C(2)^{12}$	144.734(15)

$N(2)^{17} - C(2) - C(2)^{12}$	144.734(15)		
$N(2)^{17} - C(2) - C(2)^{13}$	144.74(3)		
$N(2)^{16} - C(2) - C(2)^{12}$	144.734(16)		
$N(2)^{14} - C(2) - C(2)^{13}$	144.74(3)		
$N(2) - C(2) - C(2)^{13}$	144.734(3)		
$N(2) - C(2) - C(2)^{14}$	144.734(11)		
$N(2)^{18} - C(2) - C(2)^{13}$	144.74(3)		
$N(2)^{16} - C(2) - C(2)^{11}$	144.734(12)		
$N(2)^{18} - C(2) - C(2)^{11}$	144.734(11)		
$N(2)^3 - C(2) - C(2)^3$	144.735(16)		
$N(2)^3 - N(2) - C(2)$	92(10)		
$N(2)^1 - N(2) - C(2)$	92(10)		
$N(2)^1 - N(2) - C(2)$	92(10)		
$N(2)^3 - N(2) - C(2)$	92(10)		
N(1) - C(1) - Co(1)	180.0		
C(1) - N(1) - K(1)	180.0		
symmetry codes: (1) $1/2-x$, $1/2-y$, -z; (2) $1/2+x$, $-1/2+y$, +z; (3) -x, $1/2-y$, $1/2-z$; (4) -x $1-y$ -z; (5) +x $-1/2+y$ $1/2+z$; (6) $1/2-x$ $1-y$ $1/2-z$; (7) $1/2+x$ $-1/2+y$ +z;			

(4) -x, 1-y, -z; (5) +x, -1/2+y, 1/2+z; (6) 1/2-x, 1-y, 1/2-z; (7) 1/2+x, -1/2+y, +z; (8) -x, 1-y, 1-z; (9) 1/2-x, 1/2-y, 1-z; (10) 1/2+x, +y, -1/2+z; (11) 1/2-x, 1/2-y, +z; (12) 1/2-x, +y, 1/2-z; (13) +x, 1/2-y, 1/2-z; (14) 1/2-x, 1/2-y, +z; (15) 1/2-x, +y, 1/2-z; (16) +x, +y, +z; (17) 1/2-x, 1/2-y, +z; (18) 1/2-x, +y, 1/2-z;

(CH ₃ NH ₃) ₂ [KC0(CN) ₆]				
		LT		
_D−H…A (Å)	D–H (Å)	H…A (Å)	D…A (Å)	D–H···A (°)
$N(4)-H(4A)\cdots N(2)^{1}$	0.85(2)	2.14(2)	2.932(3)	155
$N(4)-H(4B)\cdots N(3)^{2}$	0.81(2)	2.42(2)	3.092(2)	141
$N(4)-H(4C)\cdots N(1)$	0.88(2)	2.10(2)	2.911(2)	153
symmetry codes: (1)	1/2+x,1/2-y,1/	2+z; (2) 1/2-x,1/2	+y,1/2-z;	
(CH ₃ NH ₃) ₂ [KC ₀ (CN) ₆]				
		HT		
_D–H…A (Å)	D–H (Å)	H…A (Å)	D…A (Å)	D–H···A (°)
$C(2)-H(2)\cdots N(2)^{1}$	0.78(5)	1.77(5)	2.52(7)	161
symmetry codes:	(1) $1/2$ -x,1+y,	1/2-z;		

Table 3S. Hydrogen bonds and short contacts for $(CH_3NH_3)_2[KCo(CN)_6]$ (1) and
 $(CH_3NH_3)_2[KCo(CN)_6]$ (2) in LT and HT phases

Compounds	(CH ₃ NH ₃) ₂ [KCo(CN) ₆]	(CH ₃ NH ₃) ₂ [KFe(CN) ₆]
M [g·mol ⁻¹]	318.3	315.2
Tc (heating) [K]	421.7	425.6
ΔH [J·g ⁻¹]	59.2	60.9
ΔH [kJ·mol ⁻¹]	18.8	19.2
$\Delta S [J \cdot mol \ ^{-1} \cdot K^{-1}]$	44.7	45.1
Ν	14.7	15.1

 Table 4S. Thermodynamic parameters of the phase transition for 1 and 2 in the condensed state.

Fig. 1S. TGA and DTA thermograms between 300 and 900 K for (a) (CH₃NH₃)₂[KCo(CN)₆] (1), (b) (CH₃NH₃)₂[KFe(CN)₆](2).

Fig. 2S. The temperature dependence of (a) the real part, ε' , and (b) the imaginary part, ε'' , of the electric permittivity for the pure K₃Co(CN)₆ complex along the [10-1] direction.

Fig. 3S. The temperature dependence of (a) the real part, ε' , and (b) the imaginary part, ε'' , of the electric permittivity for the pure K₃Fe(CN)₆ complex along the [101] direction.

Fig. 4S. The comparison of a) real and b) imaginary part of permittivity between the pure host K_3 Fe(CN)₆ and the quest-host crystals (2).