ESI for

Complexes of $(\eta^5$ -Cp*)Ir(III) with 1-Benzyl-3-Phenylthio/selenomethyl-1,3-Dihydrobenzoimidazole-2-Thione/Selenone: Catalysts for Oxidation and 1,2-Substituted Benzimidazole Synthesis

Alpesh K. Sharma, Hemant Joshi, Renu Bhaskar and Ajai K. Singh*

Department of Chemistry, Indian Institute of Technology Delhi, New Delhi – 110016, India

E-mail: aksingh@chemistry.iitd.ac.in

List of content

- 1. Table S1 of the crystallographic and Refinement Data of 1-4
- 2. TableS2 of Bond Lengths and Bond Angles of 1-4
- 3. Table S3 of Non-covalent Interactions C–H \cdots F Distances (Å) of Complexes 1- 4
- 4. Figure of Secondary C–H…F Interactions
- 5. Mass and NMR Spectra
- 6. NMR of compound (3a-3g, 5a-g, 7a-d)

Table S1. Crystal data ar	d structural refinement	parameters for complexes 1-4	
i abic bii ci ystai uata ai	a su accurar remement	parameters for complexes 1	

Compounds	1	2	3	4
Empirical formula	C ₃₁ H ₃₃ ClF ₆ IrN ₂ PSe ₂	C ₃₁ H ₃₃ ClF ₆ IrN ₂ PSeS	C ₃₁ H ₃₃ ClF ₆ IrN ₂ PSSe	C ₃₁ H ₃₃ ClF ₆ IrN ₂ PS ₂
Formula wt.	964.15	917.25	917.25	870.35
Crystal size [mm]	0.34×0.25×0.22	$0.43 \times 0.21 \times 0.19$	0.38×0.24×0.17	0.31×0.28×0.13
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P 21/n	P 21/n	P 21/n	P 21/n
Unit Cell	a = 8.0384(18)	a = 7.980(4)	a = 8.0837(16)	a = 8.0195(14)
dimension	b = 19.300(4)	b = 19.271(9)	b = 19.099(4)	b = 19.158(3)
	c = 22.282(5)	c = 22.304(10)	c = 22.104(4)	c = 22.138(4)
	$\alpha = 90.00^{\circ}$	$\alpha = 90.00$	α =90.00	α =90.00
	$\beta = 91.219(4)$	$\beta = 91.000(9)$	$\beta = 91.680(3)$	$\beta = 91.279(3)$
	$\gamma = 90.00^{\circ}$	$\gamma = 90.00$	γ =90.00	γ =90.00
Volume [Å ³]	3456.1(13)	3429(3)	3411.2(12)	3400.4(10)
Ζ	4	4	4	4
Density (Calc.) [Mg·m ⁻³]	1.853	1.777	1.786	1.700
Absorption coeff. [mm ⁻¹]	6.150	5.197	5.225	4.232
F(000)	1856.0	1784.0	1784.0	1712.0
θ range [°]	2.30-19.50	2.30 - 19.04	2.13-19.72	2.32-22.31
Index ranges	$-9 \le h \le 9$	$-9 \le h \le 9$	$-9 \le h \le 9$	$-9 \le h \le 9$
	$-22 \le k \le 22$	$-22 \le k \le 22$	$-22 \le k \le 22$	$-22 \le k \le 22$
	$-26 \le l \le -26$	$-26 \le l \le 26$	$-26 \le l \le 26$	$-26 \le l \le 26$
Reflections collected	32943	31761	31700	31686
Independent reflections (<i>R</i> _{int} .)	6092 (0.0760)	6045 (0.1110)	6020(0.0976)	6001(0.0831)
Max./min. Transmission	0.258 /0.172	0.620/0.493	0.371 / 0.279	0.358/0.447
Data/restraints/para meters	6092 /0/402	6045 /0/ 402	6020 /0/ 402	6001/0/402
Goodness-of-fit on F^2	1.275	1.179	1.189	1.156
Final R indices	$R_I = 0.0827$	$R_I = 0.0818$	$R_I = 0.1025$	$R_I = 0.0617$
[<i>I</i> >2σ(<i>I</i>)]	$wR_2 = 0.1363$	$wR_2 = 0.1168$	$wR_2 = 0.1922$	$wR_2 = 0.1103$
R indices (all data)	$R_I = 0.0668,$	$R_I = 0.0818$	$R_I = 0.0761$	$R_I = 0.0503$
	$wR_2 = 0.1303$	$wR_2 = 0.1111$	$wR_2 = 0.1824$	$wR_2 = 0.1062$
Largest diff. peak/hole [e.Å ⁻³]	1.267/-2.079	1.461 /-2.610	3.712/-1.739	1.681/-2.228

Complex	Bond length [Å]	Bond angle [°]
1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} Se1-Ir1-Se2 & 95.99(4)\\ Cl1-Ir1-Se2 & 90.79(8)\\ Cl1-Ir1-Se1 & 78.31(8)\\ C6-Se1-Ir1 & 113.8(3)\\ C7-Se1-Ir1 & 102.1(3)\\ C14-Se2-Ir1 & 105.6(3)\\ C14-N2-C15 & 123.4(9)\\ C14-N1-C7 & 123.2(9)\\ N1-C7-Se1 & 111.9(7)\\ N2-C15-C16 & 113.3(8)\\ C(6)-Se(1)-C(7) & 96.6(5) \end{array}$
2.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S2. Bond Lengths and Bond Angles of Complexes 1-4

4	Ir1—S1 2.3469(18)	S1—Ir1—S2 94.61(6)
	Ir1—S2 2.4146(19)	S1—Ir1—Cl1 79.33(7)
	N1—C14 1.364(9)	S2—Ir1—Cl1 90.55(8)
	N1—C8 1.392(9)	C6-S1-Ir1 116.0(3)
	C14—N2 1.346(8)	C7 - S1 - Ir1 = 104.4(3)
	S2—C14 1.685(7)	C14 - S2 - Ir1 = 108.0(2)
	S1—C6 1.782(8)	C14—N1—C7 123.2(6)
	S1—C7 1.834(7)	C14—N2—C15 124.0(6)
		N1—C7—S1 112.3(5)
		N2—C15—C16 113.4(6)
		C6-S1-C7 = 98.9(3)

Table S3. Non-covalent Interactions C–H…F Distances (Å) of Complexes 1-4

Complex 1	Complex 2	Complex 3	Complex 4
H30C-F4 2.453	H7B – F2 2.486	H9 – F5 2.580	H28B-F2 2.632
H27A-F3 2.531	H30B-F5 2.581	H7B-F3 2.489	H9-F6 2.606
H15A-F3 2.606	H15b-F3 2.619	H15A-F1 2.546	H7B-F6 2.501
H7B-F2 2.530	H28B-F3 2.541	H28C-F6 2.612	H2-F5 2.668
H7B-F1 2.480	H12-Cl1 2.883	H7B-F3 2.489	H12-Cl1 2.865
		H12-Cl1 2.829	

Secondary Interaction-

Figure S1 Three dimensional packing framework showing non-covalent C–H \cdots F interactions in the crystal lattice contain PF₆ in polyhedral form of **2**

Figure S2 Three dimensional packing framework showing non-covalent C–H \cdots F interactions in the crystal lattice contain PF₆ in polyhedral form of **3**

Figure S3 Three dimensional packing framework showing non-covalent C–H \cdots F interactions in the crystal lattice contain PF₆ in polyhedral form of 4

Mass Spectrum-

	Mass	Spectrum S	martForr	nula Report	
Analysis Info		1		Acquisition Date	3/30/2016 11:23:18 AM
Analysis Name Method Sample Name Comment	D:\Data\MAR 2016\aks tune_wide.m TM1:100	A2.d		Operator Instrument / Ser#	IITD micrOTOF-Q II 10262
Acquisition Par	ameter				
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 500.0 Vpp	Set Nebulize Set Dry Heat Set Dry Gas Set Divert Va	r 0.3 Bar er 180 °C 4.0 I/min Ilve Source
					+MS. 0.8min #4
Y	819.02	74			
	562.9529				
Meas. m/z	562.9529 # Formula	m/z er [p m	r Me rdb o an] err [pp	N-e ⁻ mSi R Confgm ul a e	Std St St St St I d dI d Cor Me Va m/ an rN z De m/ or Dif

Fig S4 Mass spectrum of complex 1

Acquisition Date 8/5/2014 10:12:34 AM Analysis Info Analysis Name Method Z:\Aug_2014\ALP1.d Operator Sharma/Singh Instrument micrOTOF-Q II 228888.10262 tune_wide.m TM1:100 Sample Name Comment Acquisition Para Source Type Focus Scan Begin Scan End eter ESI Active 50 m/z 3000 m/z lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Positive 4500 V -500 V 600.0 Vpp Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve 0.3 Bar 180 °C 4.0 l/min Source +MS, 0.1min #4 Intens. x10⁵ 2.5 1+ 773.0863 2.0 1.5 1+ 647.0619 1.0 2+ 369.0607 0.5 0.0 1000 1500 2000 2500 m/z 500 Std Std m/z Comb Diff Dev 2.2 842.7 Std Std I err Mean rdb N-Rule e pm] err Conf mSigm Std I Meas. m/z # Ion Formula m/z err [ppm] -1.9 16.5 Mean VarNo m/z rm 2.2 4.2 [ppm] a 773.086288 1 C31H33CllrN2SSe 773.083333 -3.8 ok even 28.6 24.7

Mass Spectrum SmartFormula Report

Fig S5 Mass spectrum of complex 2

Fig S6 Mass spectrum of complex 3

Fig S7 Mass spectrum of complex 4

NMR Spectra-

Se=S ligand in dmso Se77

FigureS13 $^{77}Se\{^{1}H\}$ NMR spectrum of ligand L2

FigureS15 $^{13}C\{^{1}H\}~$ NMR spectrum of ligand L3

FigureS17 ¹H NMR spectrum of ligand L4

FigureS18 $^{13}C\{^{1}H\}~$ NMR spectrum of ligand L4

FigureS21 $^{77}Se\{^{1}H\}$ NMR spectrum of complex 1

FigureS22 ¹H NMR spectrum of complex 2

FigureS23 $^{13}C{^{1}H}$ NMR spectrum of complex 2

FigureS26 $^{13}C\{^{1}H\}~$ NMR spectrum of complex 3

FigureS29 ${}^{13}C{}^{1}H$ NMR spectrum of complex 4

FigureS31 ¹H NMR spectrum after 30 min of catalysis reaction progress (1,2-phenylenediamine and benzyl alcohol)

FigureS32 ¹H NMR spectrum after 90 min of catalysis reaction progress1,2-phenylenediamine and benzyl alcohol

FigureS33 ¹H NMR spectrum of catalytic reaction mixture

NMR Spectra of compound (3a-3g)-

1-Benzyl-2-phenyl-1H-benzimidazole $(3a)^{1,3}$ - White solid; ¹H NMR (CDCl₃, 25°C vs Me₄Si): δ (ppm): 7.87 (d, J = 6.1Hz, 1H), 7.70–7.68 (m, 2H), 7.47–7.41 (m, 3H), 7.34–7.30 (m, 4H), 7.25–7.20 (m, 2H), 7.12–7.10 (m, 2H), 5.47 (s, 2H).

1-(4-Methylbenzyl)-2-(4-methylphenyl)-1H-benzimidazole $(3b)^{1,2}$ - White solid; ¹H NMR (CDCl₃, 25°C vs Me₄Si): δ (ppm) 7.83 (d, J = 6.4 Hz, 1H), 7.60 (d, J = 6.2 Hz, 2H), 7.32–7.20 (m, 5H), 7.13(d, J = 6.2 Hz, 2H), 6.98 (d, J = 6.1 Hz, 2H), 5.41 (s, 2H), 2.41 (s, 3H), 2.36 (s, 3H).

1-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-1H-benzimidazole $(3c)^{1,2}$ - White solid; ¹H NMR (CDCl₃, 25°C vs Me₄Si): δ (ppm) 7.67 (d, J = 6.2 Hz, 3H), 7.45 (d, J = 6.4 Hz, 1H), 7.27–7.18 (m, 2H), 7.06 (d, J = 5.2 Hz, 2H), 6.96 (d, J = 5.6 Hz, 2H), 6.85 (d, J = 6.5 Hz, 2H), 5.46 (s, 2H), 3.84 (s, 3H), 3.63 (s, 3H).

1-(3-Methoxybenzyl)-2-(3-methoxyphenyl)-1H-benzimidazole $(3d)^2$ - White solid; ¹H NMR (DMSO, 25°C vs Me₄Si): δ (ppm) 7.54 (d, J = 6.2 Hz, 1H), 7.47-7.32 (d, J = 6.8 Hz, 2H), 7.28–7.19 (m, 1H), 7.13–7.05 (m, 3H), 6.98-6.92 (d, J = 6.2 Hz, 2H), 6.82-6.72 (d, J = 6.2 Hz, 2H), 5.21 (s, 2H), 3.84 (s, 3H), 3.80 (s, 3H).

1-(2-Methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole $(3e)^{2-}$ White solid; ¹H NMR (DMSO, 25°C vs Me₄Si): δ (ppm) 7.82 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 7.2 Hz, 2H), 7.30 (d, J = 7.2 Hz, 1H), 7.24–7.22 (m, 1H), 7.19–7.17 (m, 3H), 7.11 (d, J = 6.2 Hz, 2H), 7.10 (d, J = 6.0 Hz, 2H), 5.41 (s, 2H), 2.32 (s, 3H), 2.27 (s, 3H).

2-(Furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole (**3f**)^{1,2}. White solid; ¹H NMR (DMSO, 25°C vs Me₄Si): δ (ppm) 7.78–7.73 (m, 1H), 7.64 (s, 1H), 7.55–7.49 (m, 1H), 7.30–7.28(m, 3H), 7.22 (d, J = 7.4 Hz, 1H), 7.63-7.58 (m, 1H), 6.31–6.25 (m, 2H), 5.66 (s, 2H).

1-(4-Nitrobenzyl)-2-(4-nitrophenyl)-1H-benzimidazole $(3g)^2$. Yellow solid; ¹H NMR (DMSO, 25°C vs Me₄Si): δ (ppm) 8.45–8.31 (m, 4H), 8.29 (d, J = 6.4 Hz, 2H), 8.17-8.09 (m, 1H), 7.36–7.23 (m, 2H), 7.21-7.15 (m, 1H), 7.13-7.12 (m, 1H), 6.79 (m, 1H), 6.56 (m, 1H), 5.40 (s, 2H).

NMR Spectra of compound (5a-g, 7a-d)-

Benzaldehyde (5a)³ - Colorless liquid; ¹H NMR (CDCl₃, 25°C vs Me₄Si) δ (ppm): 9.98 (s, 1H), δ 7.44-7.478 (m, 2 H), 7.51-7.59 (m, 1 H), 7.78-7.83 (m, 2 H).

4-Methylbenzaldehyde (5b)³⁻ Colorless liquid; ¹H NMR (CDCl₃, 25°C vs Me₄Si); δ (ppm): 2.43(s, 3H), 7.33(d, J = 6.3 Hz, 2H), 7.78 (d, J = 6.2 Hz, 2H), 9.96 (s, 1H).

4-Methoxybenzaldehyde(5c)³- Colorless liquid; ¹H NMR (CDCl₃, 25°C vs Me₄Si); δ (ppm): 9.82 (s, 1H), 7.82 (d, J = 6.6 Hz, 2H), 6.95 (d, J = 6.4 Hz, 2H), 3.91 (s, 3H).

3-Methoxybenzaldehyde (5d)³⁻ Colorless liquid; ¹H NMR (CDCl₃, 25°C vs Me₄Si); δ (ppm): 3.82(s, 3H), 7.18(d, J = 6.2 Hz, 2H), 7.38(d, J = 6.2 Hz, 2H), 7.43(d, J = 6.8 Hz, 2H), 9.93(s, 1H).

2-Methoxybenzaldehyde (5e)⁵- Colorless liquid; ¹H NMR (CDCl₃, 25°C vs Me₄Si): δ (ppm): 3.92(s, 3H), 7.02-7.04(m, 2H), 7.53-7.58(m, 1H), 7.82-7.85(q, 1H), 10.49(s, 1H).

2-Furaldehyde (5f)⁴ – Pale yellow liquid; ¹H NMR (CDCl₃, 25°C vs Me₄Si); δ (ppm): 9.65 (s, 1H), 7.69-7.67 (m, 1H), 7.52-7.44 (m, 1H), 6.60-6.59 (m, 1H).

4-Nitrobenzaldehyde (5g)^{3,4}- Pale yellow solid; ¹H NMR (CDCl₃, 25°C vs Me₄Si); δ (ppm): 10.1 (s, 1H), 8.71 (s, 1H), 8.46-8.50 (m, 1H), 8.22-8.20 (m1H), 7.72-7.80 (m, 1H).

Acetophenone (7a)³- Colorless liquid; ¹H NMR (CDCl₃, 25°C vs Me₄Si); δ (ppm): 7.93-7.90 (m, 2H), 7.55-7.50 (m, 1H), 7.46-7.40 (m, 2H), 2.59 (s, 3H).

2-Pentanone (7b)⁶ - Colorless liquid; ¹H NMR (CDCl₃, 25°C vs Me₄Si); δ (ppm): 0.92 (t, J = 6.2 Hz, 3H), 1.61(m, 3H), 2.15(s, 3H), 2.40(t, J = 6.6 Hz, 2H).

2-octanone (7c)⁶ - Colorless liquid; ¹H NMR (CDCl₃, 25°C vs Me₄Si); δ (ppm): 0.89 (t, J = 6.4 Hz, 3H), 1.22-1.39 (m, 6H), 1.53-1.64 (m, 2H), 2.11(s, 3H), 2.42 (t, J = 8.4 Hz, 2H).

Cyclopentanone (7d)⁴ - Colorless liquid; ¹H NMR (CDCl₃, 25°C vs Me₄Si); δ (ppm): 1.90-1.78 (m, 4H), 2.16-2.00 (m, 4H).

References-

- R. Chebolu, N. D. Kommi, D. Kumar, N. Bollineni, A.K. Chakraborti, J. Org. Chem. 2012, 77, 10158–10167.
- 2. K. Bahrami, M. M. Khodaei, A. Nejati, Green Chem., 2010, 12, 1237-1241.
- 3. G. Zhang , Y. Wang , X. Wen , C. Ding, Y. Li, Chem. Commun., 2012, 48, 2979-2981.
- M. L. Kantam, R. Arundhathi, P. R. Likhar, D. Damodara *Adv. Synth. Catal.* 2009, 351, 2633 – 2637
- B. Yu, Y. Zhao, Ho. Zhang, J. Xu, L. Hao, X. Gao and Z. Liu, Chem. Commun., 2014, 50, 2330–2333.
- 6. Z. Liu, Z.-C. Chen, and Q.-G. Zheng 2003, 5, 3321-3323.