Supplementary Information

The Coordination Structure of the Extracted Nickel(II) Complex with a Synergistic Mixture Containing Dinonylnaphthalene Sulfonic Acid and 2-Ethylhexyl-4-Pyridine carboxylate Ester

Jiyuan Li, Huiping Hu, [•] Shan Zhu, Fang Hu and Yongxi Wang

Outline

¹H-NMR Spectra Crystallographic details FI-IR details ESI-MS Spectra ¹H-NMR Spectra

Figure S2 ¹H-NMR spectrum of n-hexyl -4-pyridinecarboxylate ester (L^I)

Figure S4 ¹H-NMR spectrum of the nickel synergist complex

Crystallographic details

Table S1 Important bond lengths (Å) and angles (°)							
Ni1-O1W	2.063(3)	Ni1-O2W	2.071(3)				
Ni1-N1	2.104(3)						
O1W-Ni1-O1W ^a	180.0	O2W-Ni1-N1	88.66(11)				
01W-Ni1-02W	91.35(11)	O2W ^a -Ni1-N1	91.34(11)				
O1W ^a -Ni1-O2W	88.65(11)	O1W-Ni1-N1 ^a	88.18(10)				
O1W-Ni1-O2W ^a	88.65(11)	O1W ^a -Ni1-N1 ^a	91.82(10)				
O1W ^a -Ni1-O2W ^a	91.35(11)	O2W-Ni1-N1 ^a	91.34(11)				
O2W ^a -Ni1-O2W	180.0	O2W ^a -Ni1-N1 ^a	88.66(11)				
O1W-Ni1-N1	91.82(10)	N1-Ni1-N1 ^a	180.00(5)				
O1W ^a -Ni1-N1	88.18(10)						

Symmetry code: a-x, -y+1, -z+2.

Figure S52D plane for alternating rows of Ni(H2O)4(L1)22+ cations linked by naphthalene-2-sulfonate anionsspacers in the nickel synergist complex as viewed along the a-axis

Figure S6 The packing structure of the nickel synergist complex viewed down the b-axis.

Table S2 Summary of hydrogen bonding (Å and °) for the nickel synergist complex

		, ,				
D-HA	Symmetry operation on A	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)	
01W-H1105	-x, -y+1,-z+1	0.815	1.940	2.755	177.30	
01W-H1206	х, y, z	0.816	1.998	2.795	165.44	
O2W-H21O7	-x, y+1/2, -z+3/2	0.822	1.975	2.798	179.16	
O2W-H22O7	-x, -y+1, -z+1	0.815	2.031	2.829	166.22	

FI-IR details

Table S3 Infrared frequencies and assignments of L^I, HNS, the nickel synergist complex, L^{II}, HDNNS and the extracted Ni(II) complex in the non-polar organic phase

Vibrstional modes	Ľ	HNS	The nickel synergist complex	L"	HDNNS	The extracted Ni(II) complex
v _{as} (CH ₃)	2957		2956	2960	2960	2959
$v_{as}(CH_2)$	2858		2861	2866	2870	2868
v _s (CH ₃)	2928		2928	2929	2928	2929
v(C=O)	1728		1731	1730		1731
$\delta_{as}(CH_3)$	1462		1465	1463	1464	1462
$\delta_s(CH_3)$	1383		1383	1383	1382	1382
v(py)	1407		1417	1407		1417
v(C=C)	1638	1644	1638	1636	1631	1634
	1561	1501	1562	1562	1502	1562
			1503			1502
v(C-O)	1279		1287	1281		1280
v _s (S=O)		1043	1034		1051	1040

ESI-MS Spectra

Figure S7The ESI-MS spectrum of the purified HDNNS in n-hexane with a final concentration of 10^{-3} mol L⁻¹; $\stackrel{\wedge}{\sim}$ represents species of monomer HDNNS homologues and \diamondsuit represents species of dimer (HDNNS)₂ where one of HDNNS was replaced by HDNNS homologues.

Figure S8 The ESI-MS spectrum of the synergistic extractants in the non-polar organic phase.