Supporting Information

Al₂O₃ coated metal sulfides: One-pot synthesis and enhanced lithium storage stability via localized In-situ conversion reactions

Yuanyuan Liu, ^a JiantaoZai, *^a Xiaomin Li, ^a Zi-Feng Ma^a and Xuefeng Qian*^a

^aShanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites,

Shanghai Jiao Tong University, Shanghai, 200240, P. R. China

*Corresponding authors: Tel: +86-21-34202642, Fax: +86-21-54741297,

E-mail: xfqian@sjtu.edu.cn; zaijiantao@sjtu.edu.cn

Figure S1. (a) XRD patterns of Ni_3S_4 and $Ni_3S_4@Al_2O_3$ composites, SEM of (b) Ni_3S_4 , (c) $Ni_3S_4@Al_2O_3-1$, (d) $Ni_3S_4@Al_2O_3-3$. (e) HAADF-STEM image of $Ni_3S_4@Al_2O_3-2$ and (f) corresponding elemental mappings.

Figure S2. TEM image of as-prepared (a) Ni_3S_4 , (c) Ni_3S_4 @Al₂O₃-1, e) Ni_3S_4 @Al₂O₃-3 and HRTEM image of (b) Ni_3S_4 , (d) Ni_3S_4 @Al₂O₃-1, (f) Ni_3S_4 @Al₂O₃-3.

Figure S3. (a) XPS spectrum of $Ni_3S_4@Al_2O_3-2$, high-resolution spectra of (b) Ni 2p, (c) S 2p and (d) Al 2p, respectively.

Figure S4. **FE-SEM** images (a) and corresponding elemental mapping of Ni (b), Al (c), S (d), O (e) and F (e) image of Ni₃S₄@Al₂O₃-2 nanocomposite electrode after being discharged/charged for 50 cycles at the current density of 500mA g^{-1} with the SEI film being removed.

Figure S5. Charge/discharge voltage profiles (vs Li^+/Li) of the initial 3 cycles of $Ni_3S_4@Al_2O_3-2$ at 500 mA g⁻¹.

Figure S6. The 1st CV curves (a) and cycle performances (at 500 mA g^{-1} , b) of Ni₃S₄ and Ni₃S₄@Al₂O₃ between 0.01 V and 3.00 V.

Figure S7. Different rate capacities of Ni_3S_4 and $Ni_3S_4@Al_2O_3$ anodes in the range of 200-1000 mA g⁻¹.

Figure S8. XRD patterns of (a) $CoS_x@Al_2O_3$ composites, (b) CoS_x , and corresponding SEM of (c) $CoS_x@Al_2O_3$ composites and (d) CoS_x .

Figure S9. Cycle performances of $Ni_3S_4@Al_2O_3$ at 500 mA g⁻¹ between 0.01 V and 3.00 V (vs Li⁺/Li).