Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

New phosphorescent platinum(II) complexes with tetradentate C*N^N*C ligands: liquid crystallinity and polarized emission

Shilin Zhang,^a Kaijun Luo,^{*a} Hao Geng,^a Hailiang Ni,^a Haifeng Wang^a and

Quan Li*a

College of Chemistry and Materials Science, Sichuan Normal University,

5 Jingan Road, Chengdu 610068 China

Table S1 Crystal data and structure refinement for Pt-L ¹² .				
	Pt-L ¹²			
Empirical formula	$C_{46}H_{62}N_2O_4Pt$			
Formula weight	902.06			
Temperature/K	293.1(2)			
Crystal system	triclinic			
Space group	P-1			
a/Å	8.0093(2)			
b/Å	9.9381(4)			
c/Å	27.1665(9)			
α / °	84.786(3)			
β / °	86.532(3)			
γ / °	70.962(3)			
Volume/ų	2034.55(13)			
Z	2			
$\rho_{calc}g/cm^3$	1.472			
µ/mm ⁻¹	3.493			
F(000)	924			
Crystal size/mm ³	$0.7\times0.4\times0.05$			

Electronic Supporting Information (ESI)

Radiation	ΜοΚα (λ = 0.71073)
2θ range for data collection/°	6.702 to 50.7
Index ranges	$-9 \le h \le 9, -11 \le k \le 11, -32 \le l \le 32$
Reflections collected	25032
Independent reflections	7441 [R_{int} = 0.0509, R_{sigma} = 0.0472]
Data/restraints/parameters	7441/0/480
Goodness-of-fit on F ²	1.056
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0302$, $wR_2 = 0.0697$
Final R indexes [all data]	R ₁ = 0.0344, wR ₂ = 0.0726
Largest diff. peak/hole / e Å ⁻³	0.73/-1.96

Table S2. Solvatochromic Data for Pt-L¹⁶.

Solvent	Absorption bands (nm)	Emission (nm)
Toluene	440, 508	624
THF	430, 494	622
DMF	416, 474	619
Benzonitrile	415, 472	618

Table S3 Selected calculated excitation energies (ΔE), oscillator strengths (f), main orbital components, and Assignment for **Pt-L¹⁶**, **Pt-L¹²** and **Pt-L⁶** in dichloromethane.

	λ_{exc} (calc.)/nm	$\Delta E/eV$	f	Transition (Percentage Contribution)	Assignment
Pt-L ¹⁶	542.5	2.29	0.0518	H-0->L+0(+98%)	MLCT/ILCT
	436.7	2.84	0.0443	H-1->L+0(+70%), H-3->L+0(+27%)	MLCT/ILCT
	423.6	2.93	0.0513	H-3->L+0(+53%), H-1->L+0(+25%), H-2->L+0(+22%)	MLCT/ILCT
	401.4	3.09	0.0137	H-2->L+0(+75%), H-3->L+0(+19%)	MLCT/ILCT
	354.7	3.50	0.0173	H-0->L+1(+89%), H-4->L+0(+7%)	MLCT/ILCT
	351.5	3.53	0.0801	H-4->L+0(+88%), H-0->L+1(+6%)	MLCT/ILCT
Pt-L ¹²	549.5	2.26	0.0527	H-0->L+0(+98%)	MLCT/ILCT
	438.0	2.83	0.0276	H-1->L+0(+53%), H-3->L+0(+41%), H-2->L+0(5%)	MLCT/ILCT
	426.9	2.90	0.0624	H-1->L+0(+42%), H-3->L+0(31%), H-2->L+0(+26%)	MLCT/ILCT
	403.5	3.07	0.0231	H-2->L+0(+66%), H-3->L+0(+27%)	MLCT/ILCT
	360.0	3.44	0.0148	H-0->L+1(+94%)	MLCT/ILCT
	354.1	3.50	0.0123	H-0->L+2(+84%), H-4->L+0(+10%)	MLCT/ILCT
	352.0	3.52	0.0897	H-4->L+0(+83%), H-0->L+2(11%)	MLCT/ILCT
Pt-L ⁶	536.4	2.31	0.0549	H-0->L+0(+98%)	MLCT/ILCT
	439.3	2.82	0.0207	H-1->L+0(+54%), H-3->L+0(+45%)	MLCT/ILCT
	423.9	2.93	0.0845	H-3->L+0(+36%), H-2->L+0(+34%), H-1->L+0(+29%)	MLCT/ILCT
	414.9	2.99	0.0110	H-2->L+0(+63%), H-3->L+0(+18%), H-1->L+0(+16%)	MLCT/ILCT
	355.2	3.49	0.0653	H-4->L+0(+65%), H-0->L+1(+27%)	MLCT/ILCT
	353.1	3.51	0.0133	H-0->L+1(+67%), H-4->L+0(+29%)	MLCT/ILCT

Table S4 Selected bond lengths (Å) and angles (deg) for $Pt-L^{16}$ from X-ray and TD-DFT calculations.

	X-ray	TD-DFT calculation
Pt(01)-C(008)	2.005(4)	2.016
Pt(01)-C(00A)	1.999(4)	2.015
Pt(01)-N(003)	2.053(3)	2.103
Pt(01)-N(002)	2.058(3)	2.103
C(00A)-Pt(01)-C(008)	97.95(15)	98.96
N(003)-Pt(01)-N(002)	79.59(12)	78.63
C(00A)-Pt(01)- N(002)	91.60(13)	92.18
C(008)-Pt(01)- N(003)	92.33(14)	92.07

				Enthalpy changes	
Complex	Phase transition ^a / $^{\circ}$ C			(Δ H/kJ mol ⁻¹)	
Pt-L ¹⁶	Cr_1	64 Cr ₂		6.5	
	Cr_2	130	lso	10.1	
	lso	116	S _m	11.5	
	S _m	57	Cr	8.1	
Pt-L ¹²	Cr_1	58	Cr_2	5.4	
	Cr_2	93	Cr_3	1.1	
	Cr_3	120	Cr_4	3.0	
	Cr_4	144	lso	12.7	
	lso	127	S _m	10.2	
	S_{m}	108	Cr_4	3.5	
	Cr_4	52	Cr_3	15.0	
	Cr_3	25	Cr_1		
Pt-L ⁶	Cr_1	35	Cr_2	3.0	
	Cr_2	190	lso	19.7	
	lso	155	Cr_2	18.9	
	Cr ₂	153	Cr ₁	2.0	
^a Transition temperatures and enthalpy values are taken					
from the second DSC cycle starting from the crystal					

Table S5 Thermal behavior for the new platinum(II) complexes.

(10°C min⁻¹). Cr₁, Cr₂, Cr₃, Cr₄ = crystalline phase, Iso =isotropic liquid phase, S_m = smectic phase.

Fig. S1 UV-visible absorption of three platinum complexes in CH_2Cl_2 (\approx 1.2 \times 10⁻⁵ mol dm⁻³) at 298 K (λ_{ex} = 412 nm).

Fig. S2 Absorption spectra of Pt-L¹² calculated at their optimized S₀ geometry in CH₂Cl₂ solution by TD-DFT.

Fig. S3 Emission spectra of Pt-L¹⁶ in different concentrations in CH₂Cl₂ at 298 K (λ _{ex} = 412 nm).

Fig. S4 UV-visible absorption and emission spectra of Pt-L¹² (a) and Pt-L⁶ (b) in CH₂Cl₂ (\approx 1.2 \times 10⁻⁵ mol dm⁻³) at 298 K and 77 K (λ_{ex} = 412 nm)

(a)

Fig. S5 Emission spectra of Pt-L¹⁶ (a), Pt-L¹² (b), and Pt-L⁶ (c) in neat film and a dopped PMMA film at 298 K (λ_{ex} = 412 nm).

Fig. S6 DSC heating and cooling curves of Pt-L^{12.}

Fig. S7 Variable-temperature XRD patterns of Pt-L¹⁶ on heating process.

Fig. S8 Variable-temperature XRD patterns of Pt-L¹² on cooling process (a) and heating process (b). Inset shows

the magnified XRD patterns at high-angle regions.

Fig. S9 PL spectra of the aligned Pt-L¹⁶ at different degrees of polarization.

Fig. S10 Representative frontier orbitals for $Pt\text{-}L^{16},\,Pt\text{-}L^{12}$ and $Pt\text{-}L^{6}.$

¹H NMR plot of **Pt-L**⁶.

¹H NMR plot of **Pt-L¹²**.

¹H NMR plot of **Pt-L**¹⁶.

¹³C NMR plot of **Pt-L**⁶.

¹³C NMR plot of **Pt-L¹²**.

MS plot of Pt-L⁶.

MS plot of Pt-L¹².

MS plot of Pt-L¹⁶.

