Intracellular detection of hazardous Cd²⁺ through fluorescence imaging technique by a nontoxic coumarin based sensor

Chanda Kumari,^a Dibyendu Sain,^{a,b} Ashish Kumar,^a Sushanta Debnath,^c Partha Saha^c and Swapan Dey^{*a}

Table of content	Page No.
Crystal structure and Crystallographic data for R1	2
¹ H NMR, ¹³ C NMR, mass and IR spectra of R1 and its complex	3-10
Calculation of limit of detection (LOD)	11
Association constant calculation by fluorescence titration	12
Quantum yield calculation	13

Table S1: Crystallographic data for R1

CCDC No	1524036
Empirical formula	$C_{38}H_{37}N_3O_4$
Formula weight	599.70
Temperature/K	296(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.6575(3)
b/Å	12.1006(4)
c/Å	15.5767(5)
a/°	108.837(2)
β/°	92.772(2)
$\gamma/^{\circ}$	94.376(2)
Volume/Å ³	1712.65(10)
Ζ	2
$\rho_{calc}g/cm^3$	1.163
μ/mm^{-1}	0.076
F(000)	636.0
Crystal size/mm ³	? imes ? imes ?
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	3.574 to 56.624
Index ranges	$-12 \le h \le 12, -16 \le k \le 16, -20 \le l \le 20$
Reflections collected	31919
Independent reflections	8465 [$R_{int} = 0.0336$, $R_{sigma} = 0.0343$]
Data/restraints/parameters	8465/0/406
Goodness-of-fit on F ²	1.097
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0650, wR_2 = 0.1848$
Final R indexes [all data]	$R_1 = 0.1040, wR_2 = 0.2055$
Largest diff. peak/hole / e Å ⁻³	0.66/-0.28

¹H-NMR (400 MHz, CDCl₃) spectra of compound 1

¹H-NMR (400 MHz, CDCl₃) spectra of compound 3

¹H-NMR (400 MHz, CDCl₃) spectra of R1

IR spectrum of R1

Mass spectrum of R1:

Mass spectrum of R1+ Cd²⁺:

LOD of R1 with Cd²⁺

The detection limit of **R1** with Cd^{2+} was calculated on the basis of fluorescence titration data. To determine the standard deviation for the fluorescence intensity, the emission intensity of the individual receptors without any anion was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of the receptors for sensing Cd^{2+} was determined from the following equation:

$LOD = K \times SD/S$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor (**R1**) solution; S is the slope of the calibration curve.

From the linear fit graph we get slope 1.54×10^8 , and SD value is 0.52. Thus using the above formula we get the Limit of Detection = 1.01×10^{-8} M i.e. **R1** can detect **Cd²⁺** up to this very lower concentration by fluorescence techniques.

Association constant calculation by Fluorescence titration method

Association constant calculation by Fluorescence titration method of R1 with Cd^{2+} using linear regression analysis.

Quantum yield calculation:

Fluorescence quantum yields (Φ) were calculated using Equation given below (1) (Wu, D.; Huang, W.; Duan, C.; Lin, Z.; Meng, Q. *Inorg. Chem.* **2007**, *46*, 1538) using Rhodamine B ($\Phi_f = 0.49$ in ethanol) as standards.

$$\Phi_{u} = \Phi_{s} \times \frac{I_{u}}{I_{s}} \times \frac{A_{s}}{A_{u}} \times \left(\frac{\eta_{u}}{\eta_{s}}\right)^{2}$$

Where Φ_u and Φ_s are the fluorescence quantum yields of the sample and standard, I_u and I_s are the integrated emission intensities of the sample and standard, A_u and A_s are the absorbance of the sample and standard at the excitation wavelength (560 nm), and η_u and η_s are the refractive indices of the sample and standard solutions, respectively.