Intracellular detection of hazardous $\mathrm{Cd}^{\mathbf{2 +}}$ through fluorescence imaging technique by a nontoxic coumarin based sensor

Chanda Kumari, ${ }^{\text {a }}$ Dibyendu Sain, ${ }^{\text {a,b }}$ Ashish Kumar, ${ }^{\text {a }}$ Sushanta Debnath, ${ }^{\text {c }}$ Partha Saha ${ }^{\text {c }}$ and Swapan Dey*a

Table of content	Page No.
Crystal structure and Crystallographic data for R1	2
${ }^{1}$ H NMR, ${ }^{13} \mathrm{C}$ NMR, mass and IR spectra of R1 and its complex	$3-10$
Calculation of limit of detection (LOD)	11
Association constant calculation by fluorescence titration	12
Quantum yield calculation	13

Table S1: Crystallographic data for R1

CCDC No
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/ \AA
c / \AA
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

1524036
$\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{4}$
599.70

296(2)
triclinic
P-1
9.6575(3)
12.1006(4)
15.5767(5)
108.837(2)
92.772(2)
94.376(2)
1712.65(10)

2
1.163
0.076
636.0
? \times ? \times ?
$\operatorname{MoK} \alpha(\lambda=0.71073)$
3.574 to 56.624
$-12 \leq \mathrm{h} \leq 12,-16 \leq \mathrm{k} \leq 16,-20 \leq 1 \leq 20$
31919
$8465\left[\mathrm{R}_{\text {int }}=0.0336, \mathrm{R}_{\text {sigma }}=0.0343\right]$
8465/0/406
1.097
$\mathrm{R}_{1}=0.0650, \mathrm{wR}_{2}=0.1848$
$\mathrm{R}_{1}=0.1040, \mathrm{wR}_{2}=0.2055$
0.66/-0.28
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of compound 1

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of compound 2

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of compound 3

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of R 1

${ }^{13} \mathrm{C}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of R 1

IR spectrum of R1

Mass spectrum of R1:

Mass spectrum of R1+ Cd ${ }^{\mathbf{2 +}}$:

LOD of R1 with Cd ${ }^{\mathbf{2 +}}$

The detection limit of $\mathbf{R 1}$ with $\mathbf{C d}^{\mathbf{2 +}}$ was calculated on the basis of fluorescence titration data. To determine the standard deviation for the fluorescence intensity, the emission intensity of the individual receptors without any anion was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of the receptors for sensing $\mathbf{C d}^{2+}$ was determined from the following equation:

LOD $=K \times S D / S$

Where $\mathrm{K}=2$ or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor (R1) solution; S is the slope of the calibration curve.

From the linear fit graph we get slope 1.54×10^{8}, and SD value is 0.52 . Thus using the above formula we get the Limit of Detection $=1.01 \times 10^{-8} \mathrm{M}$ i.e. $\mathbf{R 1}$ can detect $\mathbf{C d}^{2+}$ up to this very lower concentration by fluorescence techniques.

Association constant calculation by Fluorescence titration method

Association constant calculation by Fluorescence titration method of $\mathbf{R 1}$ with $\mathbf{C d}^{\mathbf{2 +}}$ using linear regression analysis.

Quantum yield calculation:

Fluorescence quantum yields (Φ) were calculated using Equation given below (1) (Wu, D.; Huang, W.; Duan, C.; Lin, Z.; Meng, Q. Inorg. Chem. 2007, 46, 1538) using Rhodamine B (Φ_{f} $=0.49$ in ethanol) as standards.

$$
\Phi_{u}=\Phi_{\mathrm{s}} \times \frac{\mathrm{I}_{\mathrm{u}}}{I_{\mathrm{s}}} \times \frac{A_{\mathrm{s}}}{A_{u}} \times\left(\frac{\eta_{\mathrm{u}}}{\eta_{\mathrm{s}}}\right)^{2}
$$

Where Φ_{u} and Φ_{s} are the fluorescence quantum yields of the sample and standard, I_{u} and I_{s} are the integrated emission intensities of the sample and standard, A_{u} and A_{s} are the absorbance of the sample and standard at the excitation wavelength (560 nm), and η_{u} and η_{s} are the refractive indices of the sample and standard solutions, respectively.

