Determining time-weighted average concentrations of nitrate and ammonium in freshwaters using DGT with ion exchange membrane-based binding layers

Jianyin Huang^a, William W. Bennett^a, David T. Welsh^{a*}, and Peter R. Teasdale^a

^a Environmental Futures Research Institute, Griffith University, Gold Coast campus, QLD

4215, Australia

* Corresponding Author: <u>d.welsh@griffith.edu.au</u>. Tel: +61 (07) 555 28358. Fax: +61 (07) 555 28067

Contents

Figure S1. Mass of NH₄-N accumulated by CMI-DGT over 24 h at various ionic strength solutions.

Figure S2. Relationship between the diffusion coefficient of NH₄-N and conductivity for CMI-DGT.

Figure S3. Effects of different concentrations of Na⁺ (\mathbf{O}), K⁺ (\mathbf{C}), Ca²⁺ (\Box) and Mg²⁺ (\Box) on NH₄-N uptake.

Figure S4. Capacity of AMI-DGT for NO₃-N and CMI-DGT for NH₄-N.

Table S1. The recipe of synthetic freshwater ($pH = 7.20 \pm 0.05$).

 Table S2. Comparison of the uptake and elution efficiencies for binding membranes and hydrogels.

Table S3. Comparison of uptake of binding membranes and hydrogels for different pH.

Table S4. The corresponding D values of CMI-DGT and PrCH for NH_4^+ at different

conductivity (0.0001, 0.001 and 0.01 mol L⁻¹ NaCl).

Table S5. Trigger values based on Queensland Water Quality Guidelines.

Table S6. NO₃-N concentrations at Loders Creek: C_{SOLN} , $C_{\text{A520E-DGT}}$ and $C_{\text{AMI-DGT}}$.

Table S7. NH₄-N concentrations at Loders Creek: C_{SOLN} , $C_{\text{PrCH-DGT}}$ and $C_{\text{CMI-DGT}}$.

Table S8. NO₃-N concentrations at Saltwater Creek: C_{SOLN} , $C_{\text{A520E-DGT}}$ and $C_{\text{AMI-DGT}}$.

Table S9. NH₄-N concentrations at Saltwater Creek: C_{SOLN} , $C_{\text{PrCH-DGT}}$ and $C_{\text{CMI-DGT}}$.

Table S1. The recipe of synthetic freshwater in 8 L (pH = 7.20 ± 0.05 and conductivity = 0.23 mS cm⁻¹).

Synthetic freshwater with different ionic strengths were prepared by proportionally changing the concentrations of ions (e.g. 0.080 mS cm⁻¹ = $\frac{2}{5}$ the amount of the ions in the new recipe, 0.40 mS cm⁻¹ = approximately 2 × the amount). Finally, the concentration of HCO₃⁻ was <2 mmol L⁻¹ to maintain the pH (7.0 ± 0.5).

Chemicals	Concentration (mmol L ⁻¹)	
CaCl ₂ .2H ₂ O	0.375	
Na_2SO_4	0.115	
KCl	0.058	
NaCl	0.229	
MgCl ₂ .6H ₂ O	0.294	
HCO ₃ -	0.983	

AMI and CMI membranes had high uptake and elution efficiencies for NO₃-N and NH₄-N, respectively.

Table S2. Comparison of the uptake and elution efficiencies for binding membranes and hydrogels.

Binding agents	AMI	A520E ¹	CMI	PrCH ²
Uptake efficiency (%)	96.7 ± 3.3	98.7 ± 1.4	94.8 ± 2.3	92.5 ± 5.1
Elution efficiency (%)	77.6 ± 6.1	82.7 ± 4.2	89.9 ± 4.6	87.2 ± 5.3

The ratios of $C_{\text{AMI-DGT}}$: C_{SOLN} and $C_{\text{CMI-DGT}}$: C_{SOLN} were between 0.87 and 1.06, suggesting that the binding layer membranes produced similar results to the resin binding gels.

$C_{\text{AMI}-\text{DGT}}/C_{\text{SOLN}}$	$C_{ m A520E-DGT}/C_{ m SOLN}$	$C_{\text{CMI-DGT}}/C_{\text{SOLN}}$	$C_{\rm PrCH-DGT}/C_{\rm SOLN}$
0.87 ± 0.02	0.94 ± 0.04	0.89 ± 0.07	1.02 ± 0.06
0.91 ± 0.06	0.92 ± 0.11	0.95 ± 0.07	0.95 ± 0.08
1.01 ± 0.03	1.00 ± 0.02	0.91 ± 0.03	0.99 ± 0.05
0.93 ± 0.06	0.89 ± 0.03	0.90 ± 0.03	1.06 ± 0.03
	$C_{\text{AMI}-\text{DGT}}/C_{\text{SOLN}}$ 0.87 ± 0.02 0.91 ± 0.06 1.01 ± 0.03 0.93 ± 0.06	$C_{AMI-DGT}/C_{SOLN}$ $C_{A520E-DGT}/C_{SOLN}$ 0.87 ± 0.02 0.94 ± 0.04 0.91 ± 0.06 0.92 ± 0.11 1.01 ± 0.03 1.00 ± 0.02 0.93 ± 0.06 0.89 ± 0.03	$C_{AMI-DGT}/C_{SOLN}$ $C_{A520E-DGT}/C_{SOLN}$ $C_{CMI-DGT}/C_{SOLN}$ 0.87 ± 0.02 0.94 ± 0.04 0.89 ± 0.07 0.91 ± 0.06 0.92 ± 0.11 0.95 ± 0.07 1.01 ± 0.03 1.00 ± 0.02 0.91 ± 0.03 0.93 ± 0.06 0.89 ± 0.03 0.90 ± 0.03

Table S3. Comparison of the uptake of binding membranes and hydrogels for different pH.

Similar NH_4^+ diffusion coefficients were found in CMI-DGT and PrCH-DGT.² Mass of accumulated NH_4 -N on CMI-DGT decreased with increasing conductivity (Figure S3). High diffusion coefficient of NH_4^+ was found at low ionic strength (conductivity) and decreased with increasing conductivity (Figure S2).

Figure S1. Mass of NH₄-N accumulated by CMI-DGT over 24 h at various ionic strength solutions. The solid line is a regression line. Experimental conditions: $NH_4-N = 1.5 \pm 0.21$ mg L⁻¹; conductivity = 0.0855 ± 0.001 mS cm⁻¹ (\bigcirc), 0.203 ± 0.029 mS cm⁻¹ (\bigcirc); 0.469 ± 0.019 mS cm⁻¹ (\square); 0.683 ± 0.016 mS cm⁻¹ (\diamond); 1.0 ± 0.023 mS cm⁻¹ (a).

Figure S2. Relationship between the diffusion coefficient of NH₄-N and conductivity for CMI-DGT (\Box) and PrCH-DGT (\Box) using an agarose diffusive layer. Data were modified according to the Stokes-Einstein equation to 25 °C. pH = 7.07 ± 0.44. The trend line for the exponential relationship between diffusion coefficient (*D*) and conductivity for CMI-DGT was R² = 0.9979, *D* = 0.000115 Conductivity ^{-0.346833} and PrCH-DGT was R² = 0.9918, *D* = 0.000227 Conductivity ^{-0.432705}.

Table S4. The corresponding *D* values of CMI-DGT and PrCH for NH_4^+ at different conductivity (0.0001, 0.001 and 0.01 mol L⁻¹ NaCl).

Conductivity (µS cm ⁻¹) D values (10 ⁻⁵)	22	141	1108
СМІ	3.93	2.07	1.01
PrCH	5.96	2.67	1.09

Figure S3. Effects of different concentrations of Na⁺ (\mathbf{O}), K⁺ (\mathbf{CR}), Ca²⁺ (\Box) and Mg²⁺ (\Box) on NH₄-N uptake by CMI-DGT. Data are mean values (n = 3) ± 1 standard deviation. Experimental conditions: NH₄-N concentration = 1.5 ± 0.1 mg L⁻¹; time = 24 h; pH = 7.0 ± 0.37 for 0.0001 - 0.1 mol L⁻¹ Na⁺, K⁺, 0.0001 - 0.001 Ca²⁺ and Mg²⁺, pH = 5.9 ± 0.28 for 0.01 - 0.1 mol L⁻¹ Ca²⁺ and Mg²⁺.

 $C_{\text{DGT}}:C_{\text{SOLN}}$ for NH₄-N was between 0.84 and 1.03 at 0.0001 - 0.001 mol L⁻¹ of Na⁺, K⁺, Ca²⁺ and Mg²⁺. $C_{\text{DGT}}:C_{\text{SOLN}}$ was 1.13 and 0.94 at 0.01 mol L⁻¹ Na⁺ and K⁺, respectively. As the ionic strength increased, the $C_{\text{DGT}}:C_{\text{SOLN}}$ ratio for NH₄-N tended to decrease in the presence of all cations. At 0.01 mol L⁻¹ Ca²⁺ and Mg²⁺, $C_{\text{DGT}}:C_{\text{SOLN}}$ ratio was only 0.18 and 0.30, respectively. CMI-DGT was not quantitative at 0.1 mol L⁻¹ for any of the cations.

Membrane DGTs have high binding capacities for NO₃-N (921 \pm 88 $\mu g)$ and NH₄-N (3512 \pm 51 $\mu g).$

Figure S4. (A) Binding capacity of AMI-DGT (\bigcirc) for NO₃-N and (B) CMI-DGT (\square) for NH₄-N. Data are mean values (n = 3) ± 1 standard deviation. Experimental conditions: (A) initial NO₃-N = 13.6 mg L⁻¹, final NO₃-N = 12.3 µg L⁻¹; temperature = 24.1 ± 0.5 °C; (B) initial NH₄-N = 33.1 mg L⁻¹, final NH₄-N = 30.6 mg L⁻¹; temperature = 23.5 ± 0.4 °C; both conductivities are between 0.41 - 0.45 mS cm⁻¹ and volumes are 8 L.

Ecosystem type	NO _x -N (µg L ⁻¹)	NH ₄ -N (µg L ⁻¹)	PO ₄ -P (µg L ⁻¹)
Upland stream	40	10	15
Lowland stream	60	20	20
Freshwater lakes/ reservoirs	10	10	5

Table S5. Trigger values based on Queensland Water Quality Guidelines.

Table S6. NO₃-N concentrations (μ g L⁻¹) at Loders Creek: C_{SOLN} , $C_{A520E-DGT}$ and $C_{AMI-DGT}$.

Concentrations are presented as mean values $(n = 3) \pm 1$ standard deviation.

Time	$C_{ m SOLN}$	$C_{\text{AMI-DGT}}$	$C_{A520E-DGT}$	$C_{\text{AMI-DGT:}}C_{\text{A520E-DGT}}$
8 - 11 Dec	320.4 ± 205.0	404.1 ± 17.3	410.3 ± 6.0	0.98 ± 0.04
11 - 14 Dec	303.4 ± 74.9	268.5 ± 7.4	285.6 ± 1.6	0.94 ± 0.03
14 - 17 Dec	180.7 ± 43.3	178.5 ± 2.9	184.4 ± 2.1	0.97 ± 0.01

Table S7. NH₄-N concentrations (μ g L⁻¹) at Loders Creek: C_{SOLN} , $C_{PrCH-DGT}$ and $C_{CMI-DGT}$,

Concentrations are presented as mean values $(n = 3) \pm 1$ standard deviation.

Time	$C_{ m SOLN}$	$C_{\text{CMI-DGT}}$	C _{PrCH-DGT}	C _{CMI-DGT} :C _{PrCH-DGT}
8 - 11 Dec	167.5 ± 70.6	217.0 ± 12.4	238.0 ± 13.0	0.91 ± 0.08
11 - 14 Dec	217.2 ± 68.0	192.3 ± 0.7	229.6 ± 25.9	0.85 ± 0.09
14 - 17 Dec	269.1 ± 119.1	279.8 ± 20.7	309.9 ± 6.9	0.90 ± 0.07

Time	$C_{ m SOLN}$	$C_{\text{AMI-DGT}}$	$C_{ m A520E-DGT}$	$C_{\text{AMI-DGT:}}C_{\text{A520E-DGT}}$
27 - 30 Jan	209.6 ± 58.5	256.8 ± 5.1	257.4 ± 8.0	1.06 ± 0.04
31 Jan - 2 Feb	136.2 ± 19.9	159.2 ± 15.7	150.9 ± 9.5	1.06 ± 0.06
2 - 5 Feb	181.4 ± 32.7	184.3 ± 17.6	176.2 ± 16.2	1.10 ± 0.24

Table S8. NO₃-N concentrations (μ g L⁻¹) at Saltwater Creek: C_{SOLN} , $C_{A520E-DGT}$ and $C_{AMI-DGT}$. Concentrations are presented as mean values (n = 3) ± 1 standard deviation.

Table S9. NH₄-N concentrations (μ g L⁻¹) at Saltwater Creek: C_{SOLN} , $C_{PrCH-DGT}$ and $C_{CMI-DGT}$. Concentrations are presented as mean values (n = 3) ± 1 standard deviation.

Time	$C_{ m SOLN}$	$C_{\text{CMI-DGT}}$	$C_{\text{PrCH-DGT}}$	$C_{\text{CMI-DGT}}C_{\text{PrCH-DGT}}$
27 - 30 Jan	22.7 ± 5.4	20.8 ± 3.3	20.2 ± 1.3	1.11 ± 0.15
31 Jan - 2 Feb	17.0 ± 4.7	15.2 ± 0.2	13.7 ± 1.3	1.11 ± 0.09
2 - 5 Feb	15.2 ± 5.6	16.5 ± 1.9	14.1 ± 1.6	1.21 ± 0.09

References

- J. Huang, W. W. Bennett, P. R. Teasdale, S. Gardiner and D. T. Welsh, *Anal. Chim. Acta.*, 2016, **923**, 74-81.
- J. Huang, W. W. Bennett, D. T. Welsh, T. Li and P. R. Teasdale, *Anal. Chim. Acta.*, 2016, **904**, 83-91.