Electronic Supplementary Information

Water - the best solvent for DMAP mediated dual cyclization towards metal-free first synthesis of fully substituted phthalimide

Subhasis Samai, Debasish Ghosh, Uttam K. Das, Sanghamitra Atta, Saikat K. Manna and Dilip K. Maiti*

Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, INDIA Fax: (+) 91-33-2351-9755, E-mail: <u>dkmchem@caluniv.ac.in</u>

Se	rial No. <u>Content</u>	Page Numbers
1.	Materials and method	S2
2.	Synthesis of N-aryl phthalimides	S2
	2.a. General procedure for synthesis of compounds 3a-r	S2
	2.b. Characterization data of compounds (3a-r)	S2-S7
	2.c . General procedure for synthesis of compounds 7a-g	S 8
	2.d. Characterization data of compounds (7a-g)	S8-S10
3.	¹ H & ¹³ C NMR of compounds (3a-r and 7a-g)	S11-S35
4.	Crystallographic data of compound 3e and 3k	S36
5.	DLS study of reaction mixture in water medium	S37-S47

1. Materials and methods

All reagents were purchased from commercial suppliers and used without further purification. Commercially supplied ethyl acetate and petroleum ether were distilled before use. Petroleum ether used in our experiments was in the boiling range of 60-80 °C. Column chromatography was performed on silica gel (100-200 mesh). All the compounds are new and reported melting points are uncorrected. ¹H NMR and ¹³C NMR spectra (Bruker Advance 300) were recorded at ambient temperature using 300 MHz spectrometers (300 MHz for ¹H and 75 MHz for ¹³C). Chemical shift is reported in ppm from internal reference tetramethylsilane and coupling constant in Hz. Proton multiplicities are represented as s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Infrared spectra were recorded on FT-IR spectrometer (Perkin Elmer Spectrum 100) in thin film. HR-MS data were acquired by electron spray ionization technique on a Q-tof-micro quadriple mass spectrophotometer (Waters XEVO G2-S QTof). UV data were recorded in Perkin Elmer Lambda 750. X-RAY crystallographic data was taken in Bruker-Apex-II-CCD Difractometer. DLS (Dynamic Light Scattering) study was done in Zeta sizer Nano ZS90.

2. Synthesis of N-aryl phthalimides

2.a. General procedure of *N*-aryl phthalimides (3a-r)

In a 25 mL round bottom flask 1.0 mmol of acetyl acetanilide (1) and 2.2 mmol of dialkyl acetylene dicarboxylate (2) were taken in presence of 50 mg (0.15 mmol) of CTAB in 4 mL of H₂O. Then 1.0 mmol of 4-dimethylaminopyridine (DMAP) was added to it and the reaction mixture was stirred for the stipulated period of time at room temperature. The progress of the reaction was monitored by TLC. To the post-reaction mixture 15 mL of water and 20 mL of DCM were added and taken in a separating funnel. The organic layer was separated and dried over anhydrous Na₂SO₄. It was evaporated under reduced pressure and the crude product was purified by column chromatography with silica gel using n-hexaneethyl acetate as eluent to yield the pure *N*-aryl phthalimides (3). The washing water was collected together and removed in a lyophilizer at ambient temperature. The solid residue was dissolved in minimum volume of ethanol. Pure DMAP was crystallized out. M.p. 109-111 °C.

2.b. Characterization data of compounds (3a-r)

7-Methyl-1,3-dioxo-2-phenyl-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (3a)

Colourless solid; m.p. 168-170 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, J = 7.2 Hz, 2H), 7.41-7.38 (m, 3H), 4.48-4.43 (m, 4H), 4.32 (q, J = 6.9 Hz, 2H), 2.79 (s, 3H), 1.42-1.34 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 165.8, 164.7, 164.0, 163.9, 142.0, 137.6, 132.4, 131.0, 130.9, 129.8, 129.1, 129.0, 128.7 128.5, 126.5, 126.4, 62.8, 62.6, 62.3, 14.5, 13.9, 13.8, 13.8; FT-IR (KBr,cm⁻¹); 3481, 2984, 2924, 1780, 1719,

1613, 1596,1496, 1461, 1445; HR-MS (m/z) for C₂₄H₂₃NO₈: Calculated 453.1424, found 453.1426.

7-Methyl-1,3-dioxo-2-phenyl-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (3b)

Pale yellow solid; m.p. 196-198 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.25-7.18 (m, 4H), 4.43-4.36 (m, 4H), 4.33 (q, J = 7.2 Hz, 2H), 2.70 (s, 3H), 2.34 (s, 3H), 1.37-1.27 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 166.3, 166.0, 164.8, 164.1, 163.9, 142.0, 138.6, 137.6, 132.3, 131.0, 129.9, 129.8, 129.7, 129.1, 128.3, 126.4, 126.3, 62.8, 62.6, 62.3, 21.2,

14.5, 14.0, 13.8, 13.8; FT-IR (KBr, cm⁻¹); 3446, 2982, 2927, 1732, 1604, 1556, 1516, 1466, 1446; HR-MS (m/z) for C₂₅H₂₅NO₈: Calculated 467.1580, found 467.1581.

2(4-Ethylphenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (3c)

Pale yellow solid; m.p. 124-126 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.16 (m, 4H), 4.40-4.23 (m, 6H), 2.67 (s, 3H), 2.63 (q, *J* = 7.5 Hz, 2H), 1.31-1.24 (m, 9H), 1.18 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 165.9, 164.7, 164.1, 163.8, 144.8, 141.9, 137.5, 130.9, 129.6, 129.0, 128.6, 128.3, 126.4, 62.8, 62.5, 62.3, 28.5, 15.3, 14.4,

13.9, 13.8, 13.7; FT-IR (KBr, cm⁻¹); 3435, 2973, 2936, 2873, 1777, 1735, 1720, 1636, 1616, 1515, 1468, 1445; HR-MS (*m/z*) for C₂₆H₂₇NO₈: Calculated 481.1737, found 481.1734.

2-(4-Chlorophenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (3d)

Pale yellow solid; m.p. 178-180 °C; ¹H NMR (300 MHz, DMSO-d₆) δ 7.50-7.48 (m, 2H), 7.37-7.34 (m, 2H), 4.29-4.18 (m, 6H), 2.56 (s, 3H), 1.22-1.06 (m, 9H); ¹³C NMR (75 MHz, DMSO-d₆ + CDCl₃) δ 164.9, 163.5, 163.1, 139.4, 136.0, 132.4, 131.4, 131.2, 129.7, 128.7, 128.5, 128.4, 127.4, 62.2, 61.7, 61.5, 13.6, 13.1, 13.1, 12.9; FT-IR (KBr,

cm⁻¹); 3442, 2984, 2935, 2902, 1781, 1737, 1722, 1614, 1589, 1492, 1476; HR-MS (m/z) for C₂₄H₂₂ClNO₈: Calculated 487.1034, found 487.1039 (One of the major peaks).

2-(4-Methoxyphenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (3e)

Yellow solid; m.p. 146-148 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.18 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 4.37-4.20 (m, 6H), 3.70 (s, 3H), 2.63 (s, 3H), 1.31-1.21 (m, 9H);

¹³C NMR (75 MHz, CDCl₃) δ 166.0, 165.9, 164.6, 164.1, 163.8, 159.4, 141.7, 137.3, 132.1, 130.8, 129.4, 129.0, 127.7, 123.4, 114.3, 62.6, 62.5, 62.4, 55.3, 14.3, 13.8, 13.7, 13.6; FT-IR (KBr, cm⁻¹) 3443, 2981, 2940, 2843, 1778, 1738, 1721, 1615, 1558, 1515, 1467; HR-MS (*m/z*) for C₂₅H₂₅NO₉: Calculated 483.1529, found 483.1525.

7-Methyl-2-(4-nitrophenyl)-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (3f)

Pale yellow solid; m.p. 193-194°C; ¹H NMR (300 MHz, CDCl₃) δ 8.41 (d, J = 9 Hz, 2H), 7.78 (d, J = 9 Hz, 2H), 4.53-4.38 (m, 6H), 2.82 (s, 3H), 1.48-1.34 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 164.9, 164.2, 163.6, 163.0, 151.6, 146.6, 142.5, 142.3, 138.1, 136.6, 130.3, 130.0, 128.5, 126.5, 124.5, 124.3, 62.9, 62.6, 62.4, 14.5, 13.9, 13.8, 13.7; FT-IR (KBr, cm⁻¹) 3415, 2985,

2937, 1780, 1735, 1637, 1611, 1595, 1528, 1509; HR-MS (*m/z*) for C₂₄H₂₂N₂O₁₀: Calculated 498.1274, found 498.1272.

2-(4-Bromophenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (3g)

Colourless solid; m.p. 168-170 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, 2H, J = 8.4 Hz), 7.33 (d, 2H, J = 8.7 Hz), 4.51-4.34 (m, 6H), 2.77 (s, 3H), 1.42-1.34 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 165.5, 164.6, 163.8, 163.7, 142.2, 137.8, 132.5, 132.8, 130.7, 130.0, 129.9, 128.8, 127.9, 122.3, 62.9, 62.6, 62.4, 14.5, 13.9, 13.8,

13.7; FT-IR (KBr, cm⁻¹) 3440, 2986, 2939, 2904, 1780, 1738, 1721, 1613, 1588, 1492; HR-MS (m/z) for C₂₄H₂₂BrNO₈: Calculated 531.0529, found 531.0530 (One of the major peaks).

2-(4-Isopropylphenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (3h)

Pale yellow solid; m.p. 142-143 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.26-7.16 (m, 4H), 4.40-4.23 (m, 6H), 2.92-2.83 (m, 1H), 2.67 (s, 3H), 1.31-1.23 (m, 9H), 1.17 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 165.8, 164.6, 164.0, 163.5, 149.2, 141.8, 137.4, 132.0, 130.8, 129.5, 128.9, 128.3, 127.1, 126.2, 62.6, 62.4, 62.1, 33.7, 23.6, 14.3, 13.8, 13.7, 13.6; FT-IR

(KBr, cm⁻¹) 3451, 2986, 2963, 1778, 1741, 1723, 1637, 1615, 1519, 1504, 1458; HR-MS (*m/z*) for C₂₇H₂₉NO₈ 495.1893, found 495.1897.

2-(4-Benzoylphenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6- tricarboxylic acid triethyl ester (3i)

Pale yellow solid; m.p. 203-204 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.00 (d, J = 8.4 Hz, 2H), 7.88 (d, J = 7.8 Hz, 2H), 7.66 (d, J = 7.8 Hz, 3H), 7.57-7.52 (m, 2H), 4.54-4.39 (m, 6H), 2.84 (s, 3H), 1.48-1.30 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 195.9, 166.1, 165.4, 164.3, 163.8, 163.1, 151.7, 142.6, 137.9, 137.1, 134.6, 132.6, 130.8, 130.7, 130.0, 128.4, 126.9, 126.0,

62.8, 62.7, 62.4, 14.6, 14.0, 13.8, 13.8; FT-IR (KBr, cm⁻¹) 3445, 2981, 2935, 1720, 1655, 1603, 1576, 1511, 1467, 1448; HR-MS (m/z) for C₃₁H₂₇NO₉: Calculated 557.1686, found 557.1690.

2-(3,5-Dimethylphenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (3j)

Pale yellow solid; m.p. 170-171 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.04 (s, 1H), 6.97 (s, 2H), 4.41-4.35 (m, 6H), 2.76 (s, 3H), 2.35 (s, 6H), 1.41-1.33 (m, 9H) ¹³C NMR (75 MHz, CDCl₃) δ 166.3, 166.1, 164.8, 164.2, 163.9, 142.0, 139.0, 137.5, 131.0, 130.7, 130.5. 129.7, 124.4, 62.8, 62.6, 62.3, 21.2, 14.5, 14.0, 13.8, 13.8; FT-IR (KBr, cm⁻¹) 3434, 2980, 2923, 1737, 1725, 1721, 1642, 1617, 1476, 1444;

HR-MS (*m/z*) for C₂₆H₂₇NO₈: Calculated 481.1737, found 481.1734.

7-Methyl-1,3-dioxo-2-phenyl-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester(3k)

Light brown solid; m.p. 189-190 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, J = 7.5 Hz, 2H), 7.45 (t, J = 9.0 Hz, 3H), 4.01 (s, 3H), 3.98 (s, 3H), 3.92 (s, 3H), 2.78 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 165.7, 165.2, 164.1, 164.0, 141.8, 137.9, 132.0, 131.1, 130.9, 129.5, 129.2, 129.1, 128.8, 128.5, 126.5, 53.4, 53.3, 53.0, 14.5; FT-IR (KBr, cm⁻¹) 3417, 2953, 2924, 2853, 1783, 1741, 1638,

1618, 1597, 1492; HR-MS (*m/z*) for C₂₁H₁₇NO₈: Calculated 411.0954, found 411.0956.

7-Methyl-2-napthalen-1-yl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester (31)

Light brown solid; m.p. 208-210 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.00-7.92 (m, 2H), 7.59-7.51 (m, 4H), 7.45-7.42 (m, 1H), 3.99-3.97 (m, 6H), 3.93-3.92 (m, 3H), 2.80 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 166.1, 165.1, 164.3, 164.2, 141.9, 138.1, 134.3, 132.1, 131.3, 130.2, 129.9, 129.6, 129.5, 128.5, 127.3, 126.8, 126.6, 125.2, 122.0, 53.5, 53.3, 53.1, 14.6; FT-IR (KBr, cm⁻¹) 3415, 2924, 2853, 1745, 1723,

1638, 1616, 1597, 1511; HR-MS (*m/z*) for C₂₅H₁₉NO₈: Calculated 461.1111, found 461.1110.

2-(4-Methoxyphenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester (3m)

Brown solid; m.p. 169-170 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.23 (d, J = 4.5 Hz, 2H), 6.97 (d, 2H, J = 9.0 Hz), 3.95 (s, 3H), 3.92 (s, 3H), 3.86 (s, 3H), 3.79 (s, 3H), 2.71 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 166.0, 165.2, 164.2, 164.2, 159.5, 141.8, 137.9, 131.9, 131.2, 129.4, 129.3, 127.8, 123.4, 114.5, 55.5, 53.5, 53.4, 53.3, 14.5; FT-IR (KBr, cm⁻¹) 3467, 3414,

2953, 2924, 2852, 1740, 1720, 1637, 1617, 1514; HR-MS (*m/z*) for C₂₂H₁₉NO₉: Calculated 441.1060, found 441.1069.

2-(4-Bromophenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester (3n)

Brown solid; m.p. 196-197 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, J = 8.7 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 3.97 (s, 3H), 3.94 (s, 3H), 3.89 (s, 3H), 2.73 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 165.3, 165.0, 164.1, 163.6, 141.9, 138.0, 132.3, 132.1, 130.9, 129.9, 129.5, 129.1, 127.8, 127.6, 122.3, 53.5, 53.3, 53.1, 2953, 2923, 2852, 1783, 1736, 1723, 1638, 1615; HR

14.6; FT-IR (KBr, cm⁻¹) 3452, 3416, 2953, 2923, 2852, 1783, 1736, 1723, 1638, 1615; HR-MS (m/z) for C₂₁H₁₆BrNO₈: Calculated 489.0059, found 489.0061 (One of the major peaks).

7-Methyl-2-(4-nitrophenyl)-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester (30)

Light brown solid; m.p. 186-188 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.37 (d, J = 9.0 Hz, 2H), 7.72 (d, J = 9.0 Hz, 2H), 3.97 (s, 3H), 3.83 (s, 3H), 3.97 (s, 3H),

2.77 (s, 3H), ¹³C NMR (75 MHz, CDCl₃) δ 166.4, 164.9, 164.0, 163.2, 146.8, 142.3, 138.4, 136.6, 132.6, 130.6, 129.9, 128.8, 126.5, 124.4, 53.6, 53.4, 53.2, 14.7; FT-IR (KBr, cm⁻¹) 3412, 2961, 2924, 2853, 1741, 1639, 1614, 1598, 1527, 1500; HR-MS (*m/z*) for C₂₁H₁₆N₂O₁₀: Calculated 456.0805, found 456.0806.

2-(4-Bromo-3-methylphenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester (3p)

Light brown solid; m.p. 162-163 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, J = 8.4 Hz, 1H), 7.28 (s, 1H), 7.11-7.08 (m, 1H), 4.00 (s, 3H), 3.97 (s, 3H), 3.91 (s, 3H), 2.75 (s, 3H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 164.5, 164.1, 163.1, 162.8, 140.9, 138.2, 137.0, 132.0, 130.0, 129.0, 128.5, 128.1, 127.5, 124.3, 124.0, 52.5, 52.4, 52.1, 22.0, 13.6; FT-IR (KBr,

cm⁻¹) 3419, 2952, 2923, 2852, 1779, 1734, 1722, 1638, 1617, 1447; HR-MS (m/z) for C₂₂H₁₈BrNO₈: Calculated 503.0216, found 503.0219 (One of the major peaks).

2-(4-Isopropylphenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester (3q)

White solid; m.p. 168-169 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.27-7.16 (m, 4H), 3.90 (s, 3H), 3.87 (s, 3H), 3.81 (s, 3H), 2.90-2.81 (m, 1H), 2.66 (s, 3H), 1.18 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 166.7. 165.8, 165.2, 164.2, 149.5, 141.8, 137.8, 131.1, 129.4, 129.3, 128.3, 127.2, 126.3, 53.5, 53.3, 53.1, 33.9, 23.8,

14.5; FT-IR (KBr, cm⁻¹) 3458, 2959, 2927, 2872, 1740, 1717, 1635, 1516, 1440; HR-MS (*m/z*) for C₂₄H₂₃NO₈: 453.1424, found 453.1422.

2-(4-Ethylphenyl)-7-methyl-1,3-dioxo-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester (3r)

White solid; m.p. 165-166 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.26 (m, 4H), 3.98 (s, 3H), 3.95 (s, 3H), 3.90 (s, 3H), 2.75 (s, 3H), 2.72 (q, *J* = 7.8 Hz, 2H), 1.27 (t, *J* = 7.8 Hz, 3H), ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 165.8, 165.2, 164.2, 144.9, 141.8, 137.8, 131.2, 129.4, 129.3, 128.6, 128.3, 126.4, 53.4, 53.3, 53.1, 28.5, 15.3,

14.6; FT-IR (KBr, cm⁻¹) 3418, 2955, 2922, 2851, 1740, 1720, 1637, 1618, 1515, 1438; HR-MS (*m/z*) for C₂₃H₂₁NO₈: Calculated 439.1267, found 439.1261.

2.c. General procedure of N-aryl biarylimides (7a-g)

In a 25 mL round bottom flask 1.0 mmol of benzoyl acetanilide (6) and 2.2 mmol of dialkyl acetylene dicarboxylate (2) were taken in presence of 50 mg (0.15 mmol) of CTAB in 4 mL of H₂O. Then 1.0 mmol of 4-dimethylaminopyridine (DMAP) was added to it and the reaction mixture was stirred for the stipulated period of time at room temperature. The progress of the reaction was monitored by TLC. To the post-reaction mixture 15 mL of water and 20 mL of DCM were added and teken in a separating funnel. The organic layer was separated and dried over anhydrous Na₂SO₄. Solvent was evaporated under reduced pressure and the crude reaction mixture was purified by column chromatography using silica gel and n-hexane-ethyl acetate as eluent to yield the pure product unsymmetrical biarylimides 7.

2.d. Characterization data of compound (7a-g)

1,3-Dioxo-2,7-diphenyl-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (7a)

Light brown solid; m.p. 156-158 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.32 (m, 10H), 4.56 (q, *J* = 6.9 Hz, 2H), 4.42 (q, *J* = 7.2 Hz, 2H), 4.05 (q, *J* = 7.2Hz, 2H), 1.45-1.30 (m, 6H), 0.96 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 164.6, 164.3, 163.8, 163.7, 141.9, 140.0, 132.6, 131.0, 130.8, 130.5, 129.1, 129.1, 129.0, 128.8, 128.4, 127.9, 126.4, 63.0, 62.7, 62.0, 13.8,

13.7, 13.4; FT-IR (KBr, cm⁻¹) 3548, 3418, 2990, 2903, 1785, 1734, 1723, 1638, 1615, 1495; HR-MS (*m/z*) for C₂₉H₂₅NO₈: Calculated 515.1580, found 515.1577.

1,3-Dioxo-2,7-diphenyl-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester (7b)

Light brown solid; m.p. 210-212 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.35 (m, 4H), 7.30-7.27 (m, 6H), 3.97 (s, 3H), 3.85 (s, 3H), 3.49 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 165.1, 164.1, 164.0, 163.8, 141.9, 140.2, 132.4, 132.1, 130.7, 129.4, 129.2, 129.0, 128.8, 128.5, 127.9, 126.4, 53.5, 53.4, 52.7; FT-IR (KBr, cm⁻¹) 3443, 2949, 2924, 2854, 1784, 1732, 1613,

1596, 1496; HR-MS (*m/z*) for C₂₆H₁₉NO₈: Calculated 473.1111, found 473.1113.

1,3-Dioxo-7-phenyl-2-p-tolyl-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (7c)

Pale yellow solid; m.p. 138-139 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.37 (d, J = 4.8 Hz, 3H), 7.27-7.23 (m, 2H), 7.19-7.11 (m , 4H), 4.48 (q, J = 7.2 Hz, 2H), 4.35 (q, J = 7.2 Hz, 2H), 3.98 (q, J = 7.2 Hz, 2H), 2.29 (s, 3H), 1.38-1.27 (m, 6H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 164.6, 164.3, 163.9, 163.7, 141.8, 139.9, 138.4, 132.6, 130.5, 129.5, 129.2,

128.9, 128.8, 128.1, 127.8, 126.1, 62.8, 62.6, 61.9, 21.0, 13.8, 13.6, 13.3; FT-IR (KBr, cm⁻¹) 3439, 2992, 2962, 2926, 1784, 1738, 1725, 1638, 1516, 1465, 1447; HR-MS (m/z) for C₃₀H₂₇NO₈: Calculated 529.1737, found 529.1734.

1,3-Dioxo-7-phenyl-2-p-tolyl-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester (7d)

Pale yellow; m.p. 228-230 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.37 (m, 3H), 7.28-7.26 (m, 2H), 7.19-7.17 (m, 4H), 4.02 (s, 3H), 3.86 (s, 3H), 3.50 (s, 3H), 2.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 165.2, 164.2, 164.0, 163.9, 141.8, 140.1, 138.5, 134.3, 132.4, 130.7, 130.6, 129.6, 129.5, 129.1, 128.7, 128.1, 127.9, 126.1, 55.5, 53.4, 52.7, 21.1; FT-IR (KBr, cm⁻¹)

3449, 3004, 2950, 1784, 1744, 1734, 1615, 1516, 1448, 1441; HR-MS (*m/z*) for C₂₇H₂₁NO₈: Calculated 487.1267, found 487.1263.

2-(4-Chloro-3-trifluoromethylphenyl)-1,3-dioxo-7-phenyl-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid triethyl ester (7e)

White solid; m.p. 166-168 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.72 (s, 1H), 7.54-7.44 (m, 2H), 7.40-7.35 (m, 3H), 7.27-7.19 (m, 2H), 4.49 (q, *J* = 7.2 Hz, 2H), 4.36 (q, *J* = 7.2 Hz, 2H), 3.99 (q, *J* = 7.2 Hz, 2H), 1.39-1.27 (m, 6H), 0.90 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.5, 164.4, 163.6, 163.3, 142.3, 140.4, 132.4, 132.1, 131.3, 130.4, 130.1, 129.8, 129.3, 128.8,

128.0, 125.4, 63.1, 62.9, 62.2, 13.8, 13.7, 13.4; FT-IR (KBr, cm⁻¹) 3450, 2987, 2942, 2906, 1732, 1723, 1613, 1583, 1485; HR-MS (m/z) for C₃₀H₂₃ClF₃NO₈: Calculated 617.1064, found 617.1066 (One of the major peaks).

2-(4-Chloro-3-trifluoromethylphenyl)-1,3-dioxo-7-phenyl-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester (7f)

Pale yellow solid; m.p. 126-128 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.72 (s, 1H), 7.51 (s, 2H), 7.41 (d, J = 6.6 Hz, 3H), 7.27-7.19 (m, 2H), 3.98 (s, 3H), 3.86 (s, 3H), 3.51 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.8, 164.7, 163.7, 163.4, 163.1, 142.1, 140.5, 131.9, 130.8, 130.2, 129.5, 129.3, 128.9, 128.5, 127.9, 125.3, 125.2, 53.5, 53.4, 52.6; FT-IR (KBr, cm⁻¹) 3467, 3411, 2955,

1788, 1733, 1637, 1614, 1485, 1448; HR-MS (m/z) for C₂₇H₁₇ClF₃NO₈: Calculated 575.0595, found 575.0591 (One of the major peaks).

2-(4-Chlorophenyl)-1,3-dioxo-7-phenyl-2,3-dihydro-1*H*-isoindole-4,5,6-tricarboxylic acid trimethyl ester (7g)

Orange solid; m.p. 184-185 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.34 (m, 6H), 7.28-7.25 (m, 2H), 7.20 (s, 1H), 3.98 (s, 3H), 3.86 (s, 3H), 3.50 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 164.9, 163.8, 163.7, 163.4, 141.9, 140.2, 134.1, 132.1, 130.7, 130.4, 129.3, 129.2, 129.1, 128.6, 128.3, 128.2, 127.9, 127.8, 127.4, 127.3, 53.4, 53.3, 52.6; FT-IR (KBr, cm⁻¹) 3445, 3003, 2951,

2851, 1732, 1639, 1617, 1597, 1495, 1448; HR-MS (m/z) for C₂₆H₁₇ClNO₈: Calculated 507.0721, found 507.0724 (One of the major peaks).

3) ¹H & ¹³C NMR of compounds 3a-r & 7a-g

¹H & ¹³C NMR of **3a**

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:SUBH-19R;1H;CDC13;Supervisor:Dr.D.K.Maiti;Dt:15/01/14

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-19R;13C;CDCl3;Supervisor:Dr. D. K. Maiti;Dt:14/01/14

¹H & ¹³C NMR of **3b**

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-141R; PMR, CDCl3;Supervisor:Dr. D. K. Maiti; Dt: 27/05/15

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-141R;13C; CDCl3;Supervisor:Dr. D. K. Maiti;Dt:28/05/15

¹H & ¹³C NMR of **3**c

¹H & ¹³C NMR of **3d**

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-136; DMSOd6;Supervisor:Dr. D. K. Maiti; Dt: 07/04/15

¹H & ¹³C NMR of **3e**

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-142R; CDCl3;Supervisor:Dr. D. K. Maiti; Dt: 10/04/15

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-138(1); CDCl3;Supervisor:Dr. D. K. Maiti; Dt: 27/04/15

S17

190 180

170 160

150 140

130 120

110

100

90

80

70

60

50

40

30

20

ppm

¹H & ¹³C NMR of **3h**

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Semple:Subh-147; CDCl3;Supervisor:Dr. D. K. Maiti; Dt: 05/05/15

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-147;13C CDCl3;Supervisor:Dr. D. K. Maiti;Dt:05/05/15

¹H & ¹³C NMR of **3**i

¹H & ¹³C NMR of **3**j

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-156(2); PMR, CDCl3;Supervisor:Dr. D. K. Maiti; Dt: 11/06/15

¹H & ¹³C NMR of **3**k

2 300 MHz NMR M.chine; Oppertment of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-145(2); Chal5;Sup Evisor:Dr. D. K. Maiti; Dt: 14/04/15

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-145(2-R);13C CDCl3;Supervisor:Dr. D. K. Maiti;Dt:25/04/15

¹H & ¹³C NMR of **3**I

¹H & ¹³C NMR of **3m**

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-146; CDCl3;Supervisor:Dr. D. K. Maiti; Dt: 27/04/15

1 H & 13 C NMR of **3n**

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample: Subh-148; CDCl3; Supervisor: Dr. D. K. Maiti; Dt: 07/05/15

¹H & ¹³C NMR of **30**

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-149; CDCl3;Supervisor:Dr. D. K. Maiti; Dt: 08/05/15

¹H & ¹³C NMR of **3**p

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-152;13C; DMSOd6;Supervisor:Dr. D. K. Maiti;Dt:15/05/15

¹H & ¹³C NMR of **3**q

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS Program Sample:Subh-165;13C; CDC13;Supervisor:Dr. D. K. Maiti;Dt:15/07/15

¹H & ¹³C NMR of 7a

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS Program Sample:Subh-172; PMR; CDCl3; Supervisor: Prof. D. K. Maiti, Dt:10/08/15

¹H & ¹³C NMR of **7b**

¹H & ¹³C NMR of 7c

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS P Sample:Subh-170; PMR, CDCl3;Supervisor:Dr. D. K. Maiti; Dt: 01/08/15

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS Program Sample:Subh-170;13C; CDCl3;Supervisor:Dr. D. K. Maiti;Dt:1/08/15

¹H & ¹³C NMR of **7d**

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS Program Sample:Subh-175(2); PMR; CDCl3; Supervisor: Prof. D. K. Maiti, Dt:19/08/15

¹H & ¹³C NMR of 7e

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS Program Sample:Subh-174; PMR; CDCl3; Supervisor: Prof. D. K. Maiti, Dt:12/08/15

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS Program Sample:Subh-174;13C; CDCl3;Supervisor:Dr. D. K. Maiti;Dt:14/08/15

1 H & 13 C NMR of 7f

¹H & ¹³C NMR of **7g**

300 MHz NMR Machine; Department of Chemistry; University of Calcutta; SAP-CAS Program Sample:Subh-171R;13C; CDCl3;Supervisor:Dr. D. K. Maiti;Dt:17/08/15

4. Crystallographic data of compound 3e & 3k

Crystal parameters	3 e	3k
CCDC No.	1436308	1436272
Empirical formula	C ₂₅ H ₂₅ N O ₉	C ₂₁ H ₁₇ N O ₈
Formula weight	483.46	411.36
Crystal size/mm	0.92x 0.41 x 0.07	0.32x 0.16 x 0.05
Crystal system	Monoclinic	Triclinic
Space group	<i>P</i> 2 ₁ /c	P-1
a /Å	23.7419(9)	8.133(3)
b/Å	8.0217(3)	11.671(4)
c /Å	31.6881(9)	11.708(3)
α/0	90.00	63.061(14)
β/0	127.152(2)	84.432(14)
γ/ ⁰	90.00	75.914(14)
Volume/Å ³	4810.1(3)	960.9(5)
Ζ	8	2
D _{calc} /gcm ⁻³	1.335	1.422
F(000)	2032	428
μ MoKα /mm ⁻¹	0.102	0.111
Temperature/K	298(2)	298(2)
R _{int}	0.0367	0.0248
Range of h, k, l	-26/28,-9/9, -37/36	-9/9, -13/13, -13/13
θ min/max/°	1.08/25.00	1.95/25.00
Reflections collected/unique/observed[I>2o(I)]	59544 / 8471/ 6526	8531 / 3361/ 2729
Data/restraints/ parameters	8471/0/641	3361/0/275
Goodness of fit on F ²	1.024	1.026
Final R indices [I>2 σ (I)]	$R_1 = 0.0506, wR_2 = 0.1259$	$R_1 = 0.0506, 0.0405, wR_2 = 0.1108$
R indices (all data)	$R_1 = 0.0671, wR_2 = 0.1408$	$R_1 = 0.0671, 0.0498, wR_2 = 0.1200$

5. DLS study of the reaction in water medium

Above the CMC concentration, suitable surfactants can generate an organized media in water. Inside of the surfactant-assembled spherical micelle is sufficiently lipophilic in nature and makes both organic substrates and reagents soluble. It was confirmed by DLS (Dynamic Light Scattering) experiment of the solutions contain surfactant and solvent as well as the reaction mixture and the details result is given in the Table S1.

Composition	Time (min)	Size (r.nm)	Width (r.nm)
Reaction mixture	0	72.8	15.2
Reaction mixture	5	122.8	28.3
Reaction mixture	10	338.3	62.9
Reaction mixture	15	472.9	92.9
Reaction mixture	20	599.8	117.4
Reaction mixture	25	700.0	171.2
Reaction mixture	30	945.0	449.3

Table S1. DLS data of the reaction mixture in presence of DMAP

DLS data with DMAP

Table S2. DLS data of the reaction mixture in presence of NEt₃

Composition	Time (min)	Size (r.nm)	Width (r.nm)
Reaction mixture	0	42.5	5.5
Reaction mixture	5	81.7	17.7
Reaction mixture	10	158.4	27.7
Reaction mixture	15	200.0	33.2
Reaction mixture	20	253.0	46.3
Reaction mixture	25	337.8	54.2
Reaction mixture	30	309.4	91.4
Reaction mixture	35	157.8	50.6

Composition	Time (min)	Size (r.nm)	Width (r.nm)
Reaction mixture	0	78.2	15.3
Reaction mixture	5	97.8	15.9
Reaction mixture	10	107.0	22.3
Reaction mixture	15	170.0	43.5
Reaction mixture	20	324.3	45.1
Reaction mixture	25	344.0	48.2
Reaction mixture	30	362.6	48.7
Reaction mixture	35	405.2	63.0
Reaction mixture	40	439.9	70.8
Reaction mixture	45	491.6	77.4
Reaction mixture	50	624.8	126.2
Reaction mixture	55	678.5	146.2
Reaction mixture	60	806.4	194.6

Table S3. DLS data of the reaction mixture in presence of pyridine

