Supporting Information

Photo-organocatalytic enantioselective α hydroxylation of β -keto esters and β -keto amides with oxygen under phase transfer catalysis

Yakun Wang,^{a, b} Zehao Zheng,^a Mingming Lian,^c Hang Yin,^a Jingnan Zhao,^a Qingwei Meng^{*a} and Zhanxian Gao^a

^a State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024 China.

^b School of Pharmacy, Xinxiang Medical College, Xinxiang, Henan, P. R. China

^c Department of Pharmaceutics, Daqing Campus, Harbin Medical University. No. 1 Xinyang Road, Gaoxin District, Daqing, Heilongjiang163319, P. R. China

mengqw@dlut.edu.cn

General	2
Optimization of reaction conditions of the α -hydroxylation of β -keto amides	3
General Procedure for the Synthesis of Catalysts	5
General proceduce for the asymmetric <i>a</i> -hydroxylation of β -keto esters and β -keto amides 1	5
NMR spectra and HPLC2	4

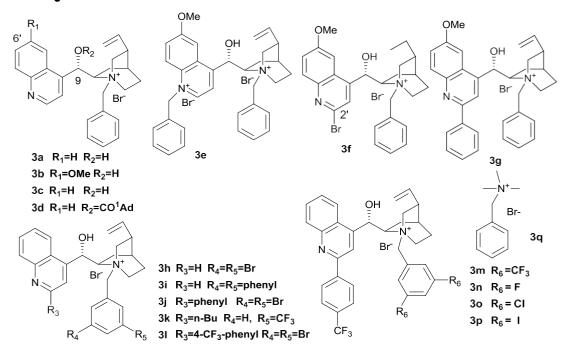
General

Unless otherwise stated, all commercial reagents and solvents were used without further additional purification. Analytical TLC was visualized with UV light at 254 nm. Thin layer chromatography was carried out on TLC aluminum sheets with silica gel 60 F₂₅₄. Purification of reaction products was carried out with chromatography on silica gel 60 (200-400 mesh). Melting points were determined with a hot plate apparatus. Optical rotations were measured on a digital polarimeter with a sodium lamp at room temperature. ¹H NMR (400 MHz) or (500 MHz) spectra was obtained at 25 °C; ¹³C NMR (126 MHz) were recorded on a VARIAN INOVA-400M and AVANCE II 400 spectrometer at 25 °C. Chemical shifts are reported as δ (ppm) values relative to TMS as internal standard and coupling constants (J) in Hz. The enantiomeric excesses (ee) were determined by HPLC. HPLC analyses were performed on equipped with Diacel Chiralpak AD-H, OD-H and AS-H chiral column (0.46 cm × 25 cm), using mixtures of n-hexane/isopropyl alcohol as mobile phase, at 25 °C. Mass spectra are reported by using electron ionization and electrospray ionization techniques. Melting points were determined with a hot plate apparatus. Optical rotations were measured on a digital polarimeter with a sodium lamp at 20 °C or 25 °C.

Optimization of reaction conditions of the *α*-hydroxylation of β-keto amides

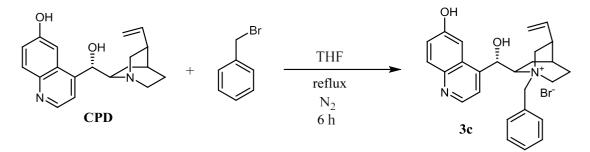
Table 1. Optimization of the reaction conditions for α -hydroxylation of β -keto amide 4a

0


	\bigcirc		PTC conditions light in air TPP	→ 〔	5a	$\langle \rangle$	
				OH Br R ₆	R ₆ 3m R ₆ 3n R ₆ 3o R ₆	= Br = CF ₃ = F = CI = 1	
Entry	Solvent	PTC (2.5 mol%)	base	Т [°С]	Reaction time	Con [%] ^b	ee [%] ^c
1	PhMe/CHCl ₃ =8:2	3a	$50\% K_2 HPO_4$	15	120 min	75	20
2	PhMe/CHCl ₃ =8:2	31	50%K ₂ HPO ₄	15	30 min	>99	39
3	PhMe/CHCl ₃ =8:2	3m	$50\% K_2 HPO_4$	15	30 min	>99	35
4	PhMe/CHCl ₃ =8:2	3n	$50\% K_2 HPO_4$	15	40 min	>99	27
5	PhMe/CHCl ₃ =8:2	30	$50\%K_2HPO_4$	15	30 min	>99	39
6	PhMe/CHCl ₃ =8:2	3p	$50\% K_2 HPO_4$	15	30 min	>99	35
7	PhMe	31	$50\%K_2HPO_4$	15	45 min	>99	39
8	CHCl ₃	31	$50\%K_2HPO_4$	15	60 min	>99	17
9	PhMe/CHCl ₃ =8:2	31	$20\%K_2HPO_4$	15	120 min	95	38
10	PhMe/CHCl ₃ =8:2	31	$30\%K_2CO_3$	15	30 min	95	31
11	PhMe/CHCl ₃ =8:2	31	$50\%K_2HPO_4$	-5	180 min	>99	19

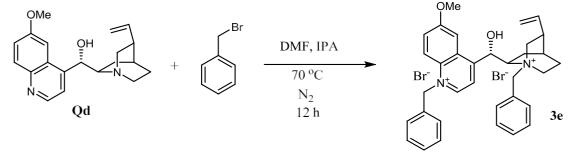
^a The reaction was conducted with substrate (0.1 mmol) in the presence of **PTC** (2.5 mol%) and TPP (0.5 mol%) in a mixture containing solvent (10 mL) and K_2 HPO₄ (4 mL, 50% aq.) at room temprature, with exposure to a 3-W LED yellow lamp for the given reaction period. ^b Yield of isolated product. ^c The enantiomeric excess was determined by HPLC analysis of the product using a chiral column (DAICEL Chiralcel OD-H) with n-hexane/2-propanol = 8:2 as the eluent.

We tried to further optimize reaction conditions of the α -hydroxylation of β -keto amides. Table 1 summarizes the effect of several parameters on this reaction. We screened the **PTC 3a**, **31-3p**. **PTC 31** was found to be the best catalyst compared with others. In the solvent screening, toluene was found to give a moderate ee value, but the stereoselectivity in chloroform was poor. We also tested other bases such as $20\% K_2 HPO_4$ or $30\% K_2 CO_3$. But the ee value was not further improved. Finally, reduction of temperature to -5 °C also led to poor results. We hold the opinion that with the H atom in N-position was sensitive to this method. In the main text, when we use **4d** instead of **4a**, the enantioselectivity of **5d** was further improved to 66%, although the reaction time was extended to 4h. After all, we need to develop new **PTC** to further improve the enantioselectivity of β -keto amides

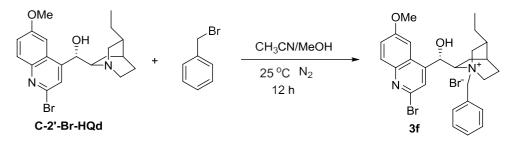

General Procedure for the Synthesis of

Catalysts

PTC **3a**, **3b**, **3d** was prepared according to our previous paper (*Eur. J. Org. Chem.* **2010**, *34*, 6525–6530; *J. Org.Chem.* **2012**, 77, 9601–9608.) PTC **3q** was purchased from Aladdin.

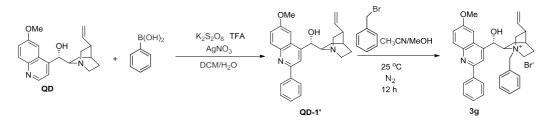

Preparation of PTC 3c

CPD was prepared according to our previous paper (*Synlett.* **2014**, *25*, 2155–2160). To a flame-dried flask equipped with a magnetic stirring bar and a reflux condenser was added **CPD** (0.93 g, 3 mmol), THF (50 mL), and benzyl bromide (0.67g, 3.9 mmol). The mixture was heated to reflux under N₂ for 6 hours until judged to be complete by TLC-analysis (CH₂Cl₂/MeOH 9:1) and then cooled to room temperature and poured onto Et₂O (150 mL) with stirring. The resulting suspension was stirred for 1 h and the precipitated solids were isolated by filtration, which was recrystallized from MeOH/Et₂O to afford the product as offwhite crystal (1.08 g, 75% yield). m. p. 264-267 °C, $[\alpha]_D^{25}$ +214.0 (*c* 0.1, MeOH). ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.11 (s, 1H), 8.74 (d, *J* = 4.4 Hz, 1H), 7.95 (d, *J* = 9.0 Hz, 1H), 7.83 – 7.73 (m, 2H), 7.68 (d, *J* = 4.4 Hz, 1H), 7.64 – 7.54 (m, 4H), 7.37 (dd, *J*


= 9.1, 2.4 Hz, 1H), 6.72 (d, J = 3.8 Hz, 1H), 6.34 (t, J = 3.0 Hz, 1H), 6.01 (m, 1H), 5.32 – 5.15 (m, 2H), 5.12 – 4.94 (m, 2H), 4.19 (ddd, J = 11.9, 8.3, 2.7 Hz, 1H), 4.04 – 3.86 (m, 2H), 3.56 – 3.43 (m, 1H), 3.04 – 2.89 (m, 1H), 2.65 (d, J = 9.0 Hz, 1H), 2.33 (t, J = 11.6 Hz, 1H), 1.98 – 1.68 (m, 3H), 1.24 – 1.01 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 155.91, 146.65, 142.89, 142.68, 137.12, 133.80, 131.37, 130.13, 128.92, 127.74, 125.56, 121.71, 119.80, 116.98, 104.55, 67.07, 64.65, 62.28, 56.05, 53.65, 36.60, 26.30, 23.01, 20.53. HRMS calcd. for [C₂₆H₂₉N₂O₂Br-Br]⁺ requires m/z 401.2229, found m/z 401.2206.

Preparation of PTC 3e

Catalyst **Q-2** was prepared partly according to Yasuda's method (Angew. Chem. Int. Ed. 2014, 53, 8375 –8378). A slurry of quinidine (0.81 g, 2.5 mmol) and benzyl bromide (1.07 g, 6.25 mmol) in IPA (0.5 mL) and DMF (3 mL) was degassed, heated to 70 °C under nitrogen atmosphere and held for 12 h. The reaction mixture was cooled to 15 °C and EtOAc (50 mL) was added over 10 min with vigorous stirring. The resulting slurry was aged at 15 °C for 1 to 2 h, filtered, rinsed with EtOAc (twice, 20 mL each) and hexanes (twice, 20 mL each). The solid was dried under vacuum to give 1.35 g of 3e as a yellow solid in 81% yield. m. p. 127-129 °C, $[\alpha]_{D}^{25}$ +143.0 (c 0.1, MeOH). ¹H NMR (500 MHz, DMSO-d₆) δ 9.67 (d, J = 5.7 Hz, 1H), 8.63 – 8.46 (m, 2H), 7.92 (dd, J = 9.8, 2.5 Hz, 1H), 7.86 – 7.71 (m, 3H), 7.58 (q, J = 2.6 Hz, 3H), 7.43 - 7.35 (m, 5H), 6.87 (s, 1H), 6.52 - 6.33 (m, 2H), 6.16 - 5.93 (m, 1H), 5.32 - 5.21 (m, 2H), 5.13 (d, J = 10.4 Hz, 1H), 4.83 (dt, J = 12.7, 4.0 Hz, 1H), 4.19 (t, J = 1.7 Hz, 4H), 4.02 (q, J = 5.0, 2.9 Hz, 3H), 3.52 (m, 2H), 3.01 – 2.86 (m, 1H), 2.70 (q, J = 8.6 Hz, 1H), 2.43 - 2.30 (m, 1H), 1.96 - 1.88 (m, 1H), 1.86 - 1.74 (m, 2H), 1.25 (s, 1H). ¹³C NMR (126 MHz, DMSO) & 159.32, 155.76, 146.31, 137.10, 133.95, 133.69, 132.81, 130.17, 129.09, 128.99, 128.70, 128.27, 127.64, 127.13, 126.99, 121.92, 121.78, 117.08, 105.19, 79.34, 66.85, 65.15, 63.34, 60.00, 56.62, 56.15, 53.77, 36.68, 26.28, 22.97, 20.58. HRMS calcd. for $[(C_{34}H_{38}N_2O_2Br_2-2Br)/2]^+$ requires m/z 253.1466, found m/z 253.1449.

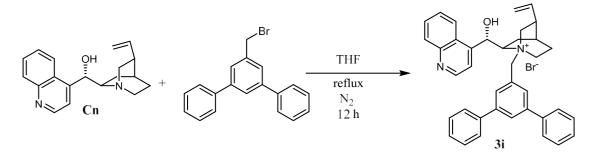

Preparation of PTC 3f

To a flame-dried flask equipped with a magnetic stirring bar and a reflux condenser was added C-2'-Br-HQd (0.2 g) (C-2'-Br-HQd was prepared according to our previous paper (*Adv. Synth. Catal.* 2016, 358, 737 – 745)), CH₃CN (3 mL),MeOH (0.75 mL) and benzyl bromide (0.21 g). The mixture was heated to reflux under N₂ for 12 hours and then cooled to

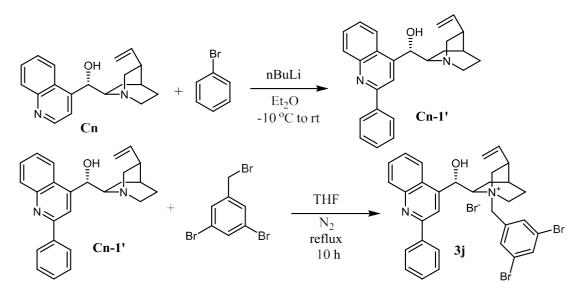
room temperature. The residue was subjected to silica gel column chromatography (40% EtOAc, 15% MeOH, 2% Et₃N in PE) to afford **3f** as a white solid (0.23 g, 80% yield). m. p. 132-135 °C, $[\alpha]_D^{25}$ +132.0 (*c* 0.1, MeOH). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.96 (s, 1H), 7.80 (d, *J* = 9.2 Hz, 1H), 7.69 (d, *J* = 7.4 Hz, 2H), 7.40 (s, 1H), 7.34 – 7.26 (m, 3H), 7.23 – 7.14 (m, 1H), 6.78 (d, *J* = 5.9 Hz, 1H), 6.44 (t, *J* = 3.6 Hz, 1H), 5.69 (d, *J* = 12.0 Hz, 1H), 5.34 (d, *J* = 12.0 Hz, 1H), 4.30 – 4.15 (m, 2H), 4.03 (d, *J* = 9.3 Hz, 1H), 3.90 (s, 3H), 3.38 (s, 1H), 2.87 (d, *J* = 10.5 Hz, 1H), 2.28 (s, 1H), 1.93 – 1.76 (m, 2H), 1.71 – 1.44 (m, 5H), 0.87 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 157.86, 147.48, 143.92, 138.21, 133.58, 130.31, 130.11, 129.00, 127.77, 124.65, 124.20, 122.59, 103.15, 67.33, 64.58, 63.23, 56.09, 55.74, 55.66, 45.59, 34.68, 20.16, 11.31, 8.51. HRMS calcd. for $[C_{27}H_{32}N_2O_2Br_2-Br]^+$ requires m/z 495.1642, found m/z 495.1623.

Preparation of PTC 3g

Qd-1'was prepared according to Baran's method(*J. Am. Chem. Soc.* **2010**, *132*, 13194–13196). To a solution of quinidine (3.24 g, 10 mmol), phenylboronic acid (2.44 g, 20 mmol, 2.0 equiv), potassium persulfate (5.44 g, 20 mmol, 2.0 equiv) in dichloromethane (50 mL) and water (30 mL) was added trifluoroacetic acid (2.24 mL, 3.0 equiv) followed by silver (I) nitrate (340 mg, 2 mmol, 0.2 equiv) in water (5 mL) and the solution was stirred vigorously at room temperature and monitored by thin-layer chromatography (40% EtOAc, 5% MeOH, 2% Et₃N inPE). After 4 h, phenylboronic acid (1.22 g, 10 mmol, 1.0 equiv) was added, and the reaction was stirred for 9 h, diluted with dichloromethane (30 mL) and washed with 2 M NaOH (30 mL). The layers were separated, and the aqueous layer was extracted with 90% CH₂Cl₂, 10% isopropyl alcohol (6 x 40 mL), the combined organic layers were concentrated under reduced pressure. The residue was applied to silica gel (40% EtOAc, 5% MeOH, 2% MeOH, 2% Et₃N in PE); to afford **QD-1'** as a light yellow solid (1.68 g, 42% yield).


PTC 3g was synthesized by the same procedure as mentioned above for catalyst **3f** from **QD-**1' as a white solid (0.35 g, 95% yield). m. p. 143-145 °C, $[\alpha]_D^{25}$ +153.0 (*c* 0.1, MeOH). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.31 – 8.22 (m, 3H), 8.09 (d, *J* = 9.0 Hz, 1H), 7.73 (dd, *J* = 6.3, 3.1 Hz, 2H), 7.66 – 7.46 (m, 8H), 6.97 (d, *J* = 3.8 Hz, 1H), 6.67 – 6.52 (m, 1H), 6.23 – 6.03 (m, 1H), 5.31 – 5.19 (m, 2H), 5.08 (d, *J* = 12.9 Hz, 1H), 4.80 (d, *J* = 12.5 Hz, 1H), 4.24 (d, *J* = 3.4 Hz, 1H), 4.09 (s, 3H), 3.96 (d, *J* = 37.0 Hz, 2H), 3.52 (s, 1H), 3.07 (d, *J* = 7.4 Hz, 3H), 2.92 (d, *J* = 10.5 Hz, 1H), 2.67 (d, *J* = 8.8 Hz, 1H), 1.91 (d, *J* = 5.1 Hz, 1H), 1.83 – 1.71 (m, 2H). ¹³C NMR (126 MHz, DMSO) δ 157.93, 153.61, 145.11, 144.25, 139.24, 137.80, 134.15, 132.04, 130.62, 129.78, 129.49, 129.37, 128.31, 127.41, 125.16, 122.33, 117.83, 117.48, 102.97, 79.75, 68.14, 65.72, 63.68, 56.44, 56.13, 54.24, 49.05, 46.09, 37.37, 26.84, 23.62, 21.07, 9.09. HRMS calcd. for $[C_{33}H_{35}N_2O_2Br-Br]^+$ requires m/z 491.2699, found m/z 491.2675.

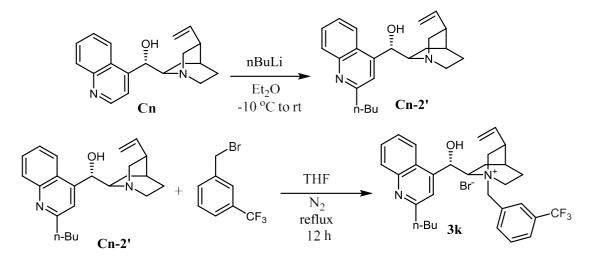
Preparation of PTC 3h


PTC 3h was synthesized by the same procedure as mentioned above for catalyst **3c** from cinchonine as a white solid (0.35 g, 95% yield). m. p. 286-289 °C, $[\alpha]_D^{25}$ +139.0 (*c* 0.1, MeOH). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.99 (d, *J* = 4.5 Hz, 1H), 8.30 (d, *J* = 8.5 Hz, 1H), 8.14 – 8.08 (m, 3H), 7.92 – 7.70 (m, 3H), 6.72 (d, *J* = 3.6 Hz, 1H), 6.45 (t, *J* = 3.0 Hz, 1H), 6.00 (ddd, *J* = 17.3, 10.1, 6.8 Hz, 1H), 5.39 – 5.18 (m, 2H), 5.08 (d, *J* = 12.5 Hz, 1H), 4.85 (d, *J* = 12.7 Hz, 1H), 4.24 (ddd, *J* = 11.9, 8.4, 2.7 Hz, 1H), 3.84 (dd, *J* = 24.9, 15.5 Hz, 2H), 3.59 – 3.22 (m, 3H), 3.09 – 2.95 (m, 1H), 2.76 – 2.60 (m, 1H), 2.29 (m, 1H), 1.96 – 1.67 (m, 3H), 1.07 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 150.04, 137.11, 135.43, 135.08, 132.36, 129.69, 129.49, 127.21, 124.31, 123.62, 122.81, 120.03, 117.00, 67.67, 64.72, 60.60, 56.00, 54.31, 36.67, 26.26, 22.98, 20.50. HRMS calcd. for [C₂₆H₂₇N₂OBr₃-Br]⁺ requires m/z 541.0485, found m/z 541.0478.

Preparation of PTC 3i

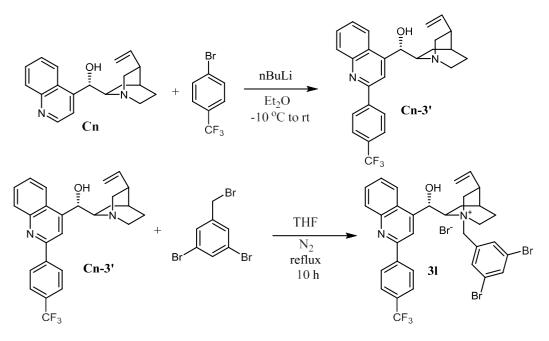
PTC 3i was synthesized by the same procedure as mentioned above for catalyst **3h** from cinchonine as a white solid (0.41 g, 81% yield). m. p. 257-259 °C, $[\alpha]_D^{25}$ +157.0 (*c* 0.1, MeOH). ¹H NMR (500 MHz, Methanol-*d*₄) δ 8.97 (d, *J* = 4.6 Hz, 1H), 8.38 (dd, *J* = 8.4, 1.4 Hz, 1H), 8.14 (dd, *J* = 8.3, 1.4 Hz, 1H), 8.06 (d, *J* = 1.7 Hz, 1H), 8.03 – 7.97 (m, 3H), 7.88 – 7.78 (m, 6H), 7.53 (t, *J* = 7.7 Hz, 4H), 7.48 – 7.41 (m, 2H), 6.70 (s, 1H), 6.10 (m, 1H), 5.36 – 5.26 (m, 3H), 5.18 (m, 1H), 4.53 (m, 1H), 4.09 (m, 2H), 3.78 (m, 1H), 3.31 – 3.22 (m, 1H), 2.70 (m, 1H), 2.59 – 2.49 (m, 1H), 2.04 – 1.80 (m, 4H), 1.11 (m, 1H). ¹³C NMR (126 MHz, MeOD) δ 151.05, 148.76, 147.33, 144.27, 141.17, 137.69, 132.25, 131.17, 130.29, 130.17, 130.07, 129.23, 129.20, 128.77, 128.38, 126.16, 124.46, 121.24, 117.97, 69.25, 66.99, 64.65, 58.30, 56.36, 38.97, 28.52, 24.82, 22.35. HRMS calcd. for $[C_{38}H_{37}N_2OBr-Br]^+$ requires m/z 537.2906, found m/z 537.2878.

Preparation of PTC 3j



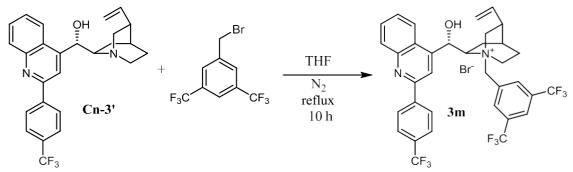
Cn-1' was synthesized partly according to Englert's method (Angew. Chem. 2007, 119, 5256 – 5259). To a dried flask equipped with a magnetic stirring bar, nBuLi (10.4 mL, 25.5 mmol, 2.4 M) was added to a 10 mL diethyl ether solution of bromobenzene (4g, 25.5 mmol). The reaction cooled to -10 °C (ice/EtOH bath) under an nitrogen atmosphere for 2 hours. After the organo-lithium compound was prepared, it was added at once to the vigorously stirred dried diethyl ether solution of cinchonine (3g, 10.2 mmol) and stirred at -10 °C for 1h. Then the mixture was warmed to ambient temperature and stirred over 2 h. The reaction is quenched by dropwise addition of AcOH (5 mL) with strong stirring and cooling, followed by addition of water (50 mL) and EtOAc (50 mL). Solid iodine (2.5 g) was added in several portions and the mixture shaken vigorously after each addition until all the solids had dissolved. Then a solution of sodium metabisulfite (Na₂S₂O₅: 1 g) in water (20 mL) is added to quench excess iodine. The mixture was made basic with the addition of aqueous ammonia (concentrated, 20%) and shaken thoroughly. The organic phase is washed with NaCl aq. and the aqueous phase was extracted with CH_2Cl_2 (40 mL). The collected organic phases are dried (Na₂SO₄), followed by filtration and evaporation. The crude product was purified by column chromatography on silica gel (15% MeOH, 2% Et₃N, 40% EtOAc in PE) to give the crude product, and then recrystallized from EtOAc to give the pure Cn-1'(0.80 g, 22% yield) as white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.24 – 8.13 (m, 3H), 8.08 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.68 (dd, *J* = 8.3, 6.8 Hz, 1H), 7.52 (dd, *J* = 8.3, 6.8 Hz, 2H), 7.44 (dt, *J* = 15.7, 7.4 Hz, 2H), 6.03 (m, 1H), 5.78 (s, 1H), 5.13 – 4.98 (m, 2H), 3.34 (s, 1H), 3.13 (d, J = 4.3 Hz, 1H), 2.94 (dd, J = 13.3, 9.9 Hz, 2H), 2.83 – 2.73 (m, 1H), 2.33 – 2.18 (m, 1H), 2.06 (m, 1H), 1.77 (s, 1H), 1.63 – 1.47 (m, 2H), 1.22 (m, 1H).

To a flame-dried flask equipped with a magnetic stirring bar and a reflux condenser was added **Cn-1'** (0.37 g, 1 mmol), THF (20 mL), and 1,3-dibromo-benzyl bromide (0.43g, 1.3 mmol). The mixture was heated to reflux under N₂ for 10 hours until judged to be complete by TLC-analysis (CH₂Cl₂/MeOH=15:1) and then cooled to room temperature and poured onto Et₂O (50 mL) with stirring. The resulting suspension was stirred for 1 h and the precipitated solids were isolated by filtration, which was recrystallized from MeOH/Et₂O to afford the product **3j** as white solid (0.56 g, 81% yield). m. p. 258-261 °C, $[\alpha]_D^{25}$ +127.0 (*c* 0.1, MeOH). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.40 – 8.24 (m, 4H), 8.18 (dd, *J* = 8.5, 1.3 Hz, 1H), 8.14 – 8.07 (m, 3H), 7.88 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.74 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.65 – 7.53 (m, 3H), 6.83 (d, *J* = 13.3 Hz, 1H), 6.51 (s, 1H), 6.17 – 6.04 (m, 1H), 5.34 – 5.21 (m, 2H), 5.12 (d, *J* = 12.5 Hz, 1H), 4.93 (d, *J* = 12.4 Hz, 1H), 4.35 – 4.14 (m, 1H), 4.00 – 3.78 (m, 2H), 3.54 (t, *J* = 11.4 Hz, 1H), 3.15 – 2.99 (m, 1H), 2.67 (d, *J* = 8.9 Hz, 1H), 2.40 (t, *J* = 11.7 Hz, 1H), 1.87 (s, 1H), 1.82 – 1.72 (m, 2H), 1.20 – 1.12 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 155.66, 147.71, 146.04, 138.61, 137.24, 135.46, 135.08, 132.39, 130.04, 129.89, 129.77, 128.97, 127.23, 127.05, 123.48, 122.81, 117.09, 117.04, 67.86, 65.09, 60.62, 56.00, 54.36,


36.97, 26.32, 23.06, 20.44. HRMS Calcd. for $[C_{32}H_{31}N_2OBr_3-Br]^+$ requires m/z 617.0803, found m/z 617.0780.

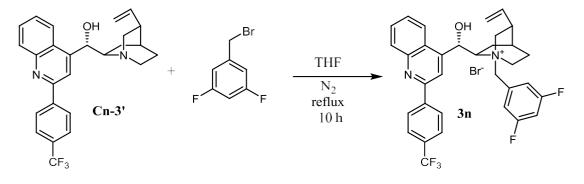
Preparation of PTC 3k

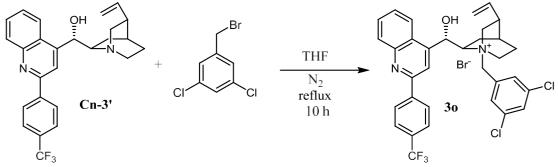
Cn-2' was synthesized by the same procedure as mentioned above for **Cn-1'** from cinchonine and *n*BuLi (2.5 equiv) as a white solid (53% yield). **PTC 3k** was synthesized by the same procedure as mentioned above for **PTC 3j** from **Cn-2'** and 3-trifluoromethyl- benzyl bromide (1.5 equiv) as a white solid (87% yield). m. p. 192-194 °C, $[\alpha]_D^{25}$ +103.0 (*c* 0.1, MeOH).¹H NMR (500 MHz, DMSO-*d*₆) δ 8.31 – 8.25 (m, 1H), 8.21 (s, 1H), 8.03 (ddd, *J* = 32.8, 29.7, 7.8 Hz, 3H), 7.88 – 7.77 (m, 2H), 7.74 – 7.64 (m, 2H), 6.74 (d, *J* = 3.7 Hz, 1H), 6.48 (t, *J* = 3.0 Hz, 1H), 6.03 (ddd, *J* = 17.3, 10.5, 7.0 Hz, 1H), 5.34 – 5.14 (m, 3H), 5.08 – 4.98 (m, 1H), 4.25 (s, 1H), 4.04 – 3.79 (m, 2H), 3.49 (t, *J* = 11.4 Hz, 1H), 2.98 (tt, *J* = 7.6, 4.0 Hz, 3H), 2.65 (d, *J* = 9.1 Hz, 1H), 2.42 – 2.29 (m, 1H), 1.88 (s, 1H), 1.77 (q, *J* = 7.4 Hz, 4H), 1.39 (q, *J* = 7.4 Hz, 2H), 1.17 – 1.04 (m, 1H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 162.01, 147.44, 144.84, 137.96, 137.14, 130.27, 130.08, 129.32, 129.21, 126.87, 126.25, 123.41, 122.92, 120.05, 117.02, 67.60, 64.66, 61.36, 55.84, 54.01, 37.99, 36.72, 31.26, 26.36, 22.96, 21.89, 20.44, 13.81. HRMS Calcd. for $[C_{31}H_{36}F_{3}N_2OBr-Br]^+$ requires m/z 509.2780, found m/z 509.2754.


Preparation of PTC 31

Cn-3' was synthesized by the same procedure as mentioned above for **Cn-1'** from cinchonine , 4-bromobenzotrifluoride and *n*BuLi (2.5 equiv) as a light orange solid (42% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.29 (d, J = 8.1 Hz, 2H), 8.19 (dd, J = 8.4, 1.1 Hz, 1H), 8.10 (s, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.77 (d, J = 8.1 Hz, 2H), 7.74 – 7.68 (m, 1H), 7.53 – 7.44 (m, 1H), 6.00 (m, 1H), 5.82 (d, J = 4.4 Hz, 1H), 5.13 – 4.96 (m, 2H), 3.34 (d, J = 13.0 Hz, 1H), 3.17 (td, J = 9.2, 4.4 Hz, 1H), 2.96 (dd, J = 13.7, 9.7 Hz, 2H), 2.86 – 2.72 (m, 1H), 2.27 (m, 1H), 2.12 – 2.02 (m, 1H), 1.80 (s, 1H), 1.64 – 1.45 (m, 2H), 1.27 (m, 1H).

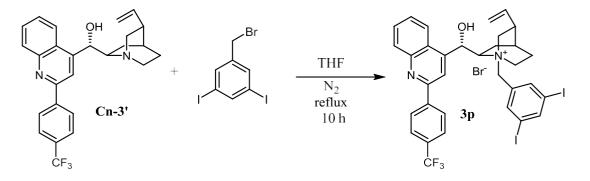
PTC 3I was synthesized by the same procedure as mentioned above for **PTC 3j** from **Cn-3**' and 3,5-dibromo-benzyl bromide (1.3 equiv) as a white solid (89% yield). m. p. 230-233 °C, $[a]_D^{25}$ +113.0 (*c* 0.1, MeOH). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.52 (d, *J* = 8.1 Hz, 2H), 8.39 (d, *J* = 9.0 Hz, 2H), 8.22 (d, *J* = 8.4 Hz, 1H), 8.12 (dd, *J* = 15.1, 1.8 Hz, 3H), 7.98 (d, *J* = 8.2 Hz, 2H), 7.92 (t, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 6.85 (d, *J* = 3.8 Hz, 1H), 6.54 (t, *J* = 3.0 Hz, 1H), 6.21 – 6.05 (m, 1H), 5.34 – 5.22 (m, 2H), 5.14 (d, *J* = 12.3 Hz, 1H), 4.94 (d, *J* = 12.4 Hz, 1H), 4.24 (ddd, *J* = 11.9, 8.3, 2.7 Hz, 1H), 4.04 – 3.84 (m, 2H), 3.55 (t, *J* = 11.4 Hz, 1H), 3.16 – 3.01 (m, 1H), 2.76 – 2.65 (m, 1H), 2.42 (t, *J* = 11.7 Hz, 1H), 1.99 – 1.70 (m, 3H), 1.16 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 154.11, 147.64, 146.61, 142.38, 137.22, 135.48, 135.07, 132.41, 130.15, 129.85, 129.60, 128.05, 127.69, 125.87, 125.84, 125.81, 125.31, 123.84, 123.79, 123.15, 122.78, 67.79, 65.08, 60.46, 55.97, 54.31, 37.03, 26.34, 23.06, 20.47. HRMS calcd. for [C₃₃H₃₀F₃N₂OBr₃-Br]⁺ requires m/z 685.0677, found m/z 685.0655.


Preparation of PTC 3m

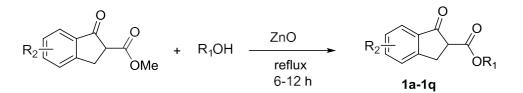

To a flame-dried flask equipped with a magnetic stirring bar and a reflux condenser was added **Cn-3'** (0.24 g, 0.55 mmol), THF (15 mL) and 3,5-di-CF₃-benzyl bromide (0.305g, 1.1 mmol). The mixture was heated to reflux under N_2 for 10 hours until judged to be complete

by TLC-analysis (10% MeOH, 2% Et₃N, 40% EtOAC in PE) and then cooled to room temperature. The crude product was purified by column chromatography on silica gel (15% MeOH, 2% Et₃N, 40% EtOAc in PE) to give the crude product, and then recrystallized from Et₂O to give the pure **PTC 3m** (0.31 g, 76% yield) as light yellow solid. m. p. 205-209 °C, $[\alpha]_D^{25}$ +93.0 (*c* 0.1, MeOH). ¹H NMR (500 MHz, Methanol-*d*₄) δ 8.59 – 8.38 (m, 6H), 8.32 – 8.20 (m, 2H), 7.97 – 7.79 (m, 4H), 6.69 (d, *J* = 2.6 Hz, 1H), 6.13 (m, 1H), 5.48 – 5.39 (m, 1H), 5.38 – 5.24 (m, 3H), 4.58 (ddd, *J* = 11.7, 8.4, 2.8 Hz, 1H), 4.12 (dt, *J* = 34.5, 10.1 Hz, 2H), 3.61 (t, *J* = 11.3 Hz, 1H), 3.23 – 3.11 (m, 1H), 2.78 – 2.53 (m, 2H), 2.07 – 1.84 (m, 3H), 1.21 (m, 1H). ¹³C NMR (126 MHz, MeOD) δ 156.68, 149.52, 147.61, 144.10, 137.57, 135.57, 133.81, 133.54, 132.17, 131.39, 131.35, 129.32, 129.25, 126.89, 126.86, 126.83, 125.63, 125.57, 125.31, 124.41, 123.47, 118.65, 118.13, 69.90, 67.31, 62.79, 58.02, 56.43, 38.95, 28.47, 24.73, 22.33. HRMS calcd. for [C₃₅H₃₀F₉N₂OBr-Br]⁺ requires m/z 665.2209, found m/z 665.2217.

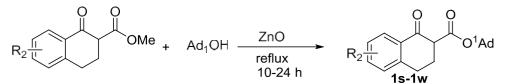
Preparation of PTC 3n



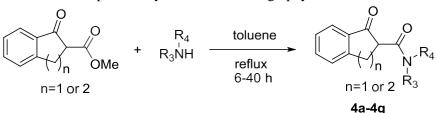
PTC 3n was synthesized by the same procedure as mentioned above for catalyst **3m** from **Cn-3'** and 3,5-di-F-benzyl bromide as a light yellow solid (0.55 g, 85% yield). m. p. 193-196 °C, $[\alpha]_D^{25}$ +101.0 (*c* 0.1, MeOH). ¹H NMR (500 MHz, Methanol-*d*₄) δ 8.49 – 8.42 (m, 3H), 8.38 (dd, *J* = 8.5, 1.3 Hz, 1H), 8.23 (dd, *J* = 8.4, 1.3 Hz, 1H), 7.97 – 7.76 (m, 4H), 7.59 – 7.45 (m, 2H), 7.35 – 7.18 (m, 1H), 6.64 (d, *J* = 2.6 Hz, 1H), 6.12 (ddd, *J* = 17.4, 10.5, 7.1 Hz, 1H), 5.39 – 5.28 (m, 2H), 5.20 (d, *J* = 12.4 Hz, 1H), 5.08 (d, *J* = 12.5 Hz, 1H), 4.49 (ddd, *J* = 11.8, 8.5, 2.8 Hz, 1H), 4.22 – 4.06 (m, 1H), 3.97 (td, *J* = 9.7, 4.8 Hz, 1H), 3.69 (ddd, *J* = 12.2, 10.4, 1.6 Hz, 1H), 3.22 – 3.05 (m, 2H), 2.69 (q, *J* = 8.8 Hz, 1H), 2.63 – 2.51 (m, 1H), 1.93 (m, 3H), 1.16 (m, 1H). ¹³C NMR (126 MHz, MeOD) δ 165.66, 165.56, 163.68, 163.58, 156.73, 149.56, 147.68, 144.13, 137.59, 132.54, 131.41, 129.31, 129.20, 126.94, 126.91, , 125.34, 124.18, 118.65, 118.21, 118.06, 117.99, 107.15, 69.69, 67.29, 63.27, 58.34, 56.35, 38.98, 28.36, 24.74, 22.32. HRMS calcd. for [C₃₃H₃₀F₅N₂OBr-Br]⁺ requires m/z 565.2273, found m/z 565.2243.


PTC 30 was synthesized by the same procedure as mentioned above for catalyst **3m** from **Cn-3'** and 3,5-di-Cl-benzyl bromide as a white solid (0.46 g, 68% yield). m. p. 251-253 °C, $[\alpha]_D^{25}$ +106.0 (*c* 0.1, MeOH). ¹H NMR (500 MHz, Methanol-*d*₄) δ 8.49 – 8.41 (m, 3H), 8.37

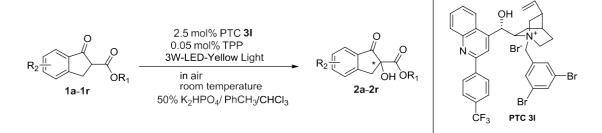
(dd, J = 8.4, 1.3 Hz, 1H), 8.25 (dd, J = 8.4, 1.3 Hz, 1H), 7.95 – 7.80 (m, 6H), 7.74 (d, J = 1.9 Hz, 1H), 6.65 (d, J = 2.5 Hz, 1H), 6.13 (ddd, J = 17.4, 10.4, 7.1 Hz, 1H), 5.41 – 5.26 (m, 2H), 5.18 (d, J = 12.5 Hz, 1H), 5.05 (d, J = 12.5 Hz, 1H), 4.49 (ddd, J = 11.8, 8.5, 2.8 Hz, 1H), 4.09 (t, J = 9.7 Hz, 1H), 4.03 – 3.91 (m, 1H), 3.76 – 3.58 (m, 2H), 3.19 (dt, J = 11.9, 9.2 Hz, 1H), 2.70 (q, J = 8.8 Hz, 1H), 2.65 – 2.51 (m, 1H), 2.05 – 1.85 (m, 3H), 1.39 – 1.12 (m, 2H). ¹³C NMR (126 MHz, MeOD) δ 156.75, 149.57, 147.66, 144.12, 137.59, 137.02, 133.40, 132.60, 132.51, 132.34, 131.77, 131.43, 129.31, 129.22, 126.91, 126.88, 125.34, 124.62, 124.18, 118.64, 118.09, 69.71, 67.30, 63.10, 58.25, 56.41, 38.99, 28.41, 24.74, 22.31. HRMS calcd. for [C₃₃H₃₀Cl₂F₃N₂OBr-Br]⁺ requires m/z 597.1682, found m/z 597.1663.



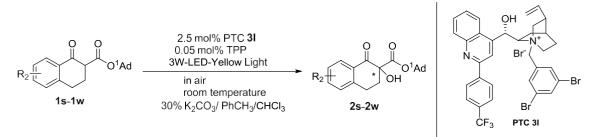
PTC 3p was synthesized by the same procedure as mentioned above for catalyst **3m** from **Cn-3'** and 3,5-di-Cl-benzyl bromide as a light yellow solid (0.43 g, 82% yield). m. p. 247-249 °C, $[\alpha]_D^{25}$ +108.0 (*c* 0.1, MeOH). ¹H NMR (500 MHz, Methanol-*d*₄) δ 8.49 – 8.41 (m, 3H), 8.37 (t, *J* = 1.5 Hz, 1H), 8.35 – 8.24 (m, 2H), 8.19 (d, *J* = 1.5 Hz, 2H), 7.96 – 7.78 (m, 4H), 6.64 (d, *J* = 2.5 Hz, 1H), 6.13 (m, 1H), 5.51 (s, 1H), 5.41 – 5.28 (m, 2H), 5.12 – 4.93 (m, 2H), 4.52 – 4.43 (m, 1H), 4.04 (t, *J* = 9.6 Hz, 1H), 3.88 (d, *J* = 11.4 Hz, 1H), 3.74 – 3.55 (m, 1H), 3.23 – 3.11 (m, 1H), 2.71 (d, *J* = 8.9 Hz, 1H), 2.58 (t, *J* = 11.9 Hz, 1H), 2.05 – 1.85 (m, 3H), 1.19 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 154.10, 147.63, 146.64, 145.75, 142.37, 141.24, 137.26, 132.20, 130.15, 129.84, 129.59, 128.04, 127.68, 125.87, 125.84, 125.31, 123.80, 123.15, 117.22, 117.13, 96.64, 67.71, 65.04, 60.35, 55.93, 54.25, 36.99, 30.91, 26.38, 20.44. HRMS calcd. for $[C_{33}H_{30}I_2F_3N_2OBr-Br]^+$ requires m/z 781.0394, found m/z 781.0368.


General proceduce for Preparation of βketo esters and β-keto amides

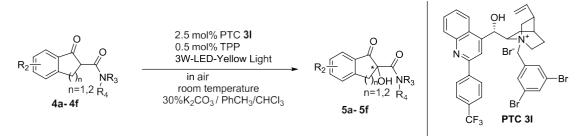
 β -keto esters **1a-1q** were prepared according to the literature procedure (*Eur. J. Org. Chem.* **2010**, *34*, 6525–6530) To a flask equipped with a Dean-Stark trap and reflux condenser was added β -keto methyl ester (1 mmol), corresponding alcohol, the transesterification catalyst or ZnO and toluene or cyclohexane. The mixture was heated to reflux, distilling the methanol formed during the reaction. The mixture was refluxed until complete conversion was observed by TLC, then concentrated under reduced pressure and the crude residue was purified by column chromatography.


 β -keto esters **1s-1w** were prepared as above. To a flask equipped with a Dean-Stark trap and reflux condenser was added β -keto methyl ester (1 mmol), corresponding alcohol, the transesterification catalyst ZnO and toluene or cyclohexane. The mixture was heated to reflux, distilling the methanol formed during the reaction. The mixture was refluxed for 10-24 h until complete conversion was observed by TLC, then concentrated under reduced pressure and the crude residue was purified by column chromatography.

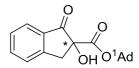
 β -keto amides **4a-4g** were prepared partly according to the literature procedure (*Synlett.* **2011**, 425–429). To a flask equipped with a Dean-Stark trap and reflux condenser was added β -keto methyl ester (1 mmol), corresponding amine and toluene. The mixture was refluxed for 10-24 h until complete conversion was observed by TLC. then concentrated under reduced pressure and the crude residue was purified by column chromatography or recrystallization to give the desired product.


General proceduce for the asymmetric *a*-hydroxylation of β -keto esters and β -keto amides.

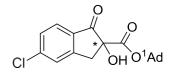
α -hydroxylation of β -indanone esters

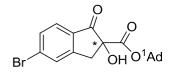

The reaction was conducted with substrate **1a-1r** (0.1 mmol) in the presence of PTC **3l** (2.5 mol%) and tetraphenylporphine (TPP) (0.05 mol%) in a mixture containing PhCH₃/CHCl₃=8:2 (10 mL) and K₂HPO₄ (4 mL, 50% aq.) at room temprature, with exposure to a 3-W LED yellow lamp for the given reaction period. After completion of the reaction (confirmed by TLC analysis,), the mixture was diluted with EtOAc (50 mL), washed with water (3×20 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to give **2a-2r**. The ee of the product was determined by chiral HPLC.

α-hydroxylation of 1-tetralone-derived adamantly β-keto esters

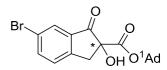


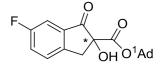
The reaction was conducted with substrate **1s-1w** (0.1 mmol) in the presence of PTC **3l** (2.5 mol%) and tetraphenylporphine (TPP) (0.05 mol%) in a mixture containing PhCH₃/CHCl₃=8:2 (10 mL) and K₂CO₃ (4 mL, 30% aq.) at room temprature, with exposure to a 3-W LED yellow lamp for the given reaction period. After completion of the reaction (confirmed by TLC analysis,), the mixture was diluted with EtOAc (50 mL), washed with water (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to give **2s-2w**. The ee of the product was determined by chiral HPLC.


α -hydroxylation of β -keto amides

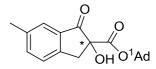

The reaction was conducted with substrate **4a-4f** (0.1 mmol) in the presence of PTC **3l** (2.5 mol%) and tetraphenylporphine (TPP) (0.5 mol%) in a mixture containing PhCH₃/CHCl₃=8:2 (10 mL) and K₂HPO₄ (4 mL, 50% aq.) or K₂CO₃ (4 mL, 30% aq.) at room temprature, with exposure to a 3-W LED yellow lamp for the given reaction period. After completion of the reaction (confirmed by TLC analysis), the mixture was diluted with EtOAc (50 mL), washed with water (3×20 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to give **5a-5f**. The ee of the product was determined by chiral HPLC.

1-Adamantyl 2-hydroxy-1-oxo-2,3-dihydro-1H-inde-ne-2-carboxylate (**2a**); colorless oil; (32.0 mg, 98% yield, 90% ee); $[\alpha]_D{}^{25}$ 28.7 (*c* 0.47, CHCl₃). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 7.7 Hz, 1H), 7.65 (td, *J* = 7.5, 1.1 Hz, 1H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 4.01 (s, 1H), 3.66 (d, *J* = 17.1 Hz, 1H), 3.22 (d, *J* = 17.1 Hz, 1H), 2.12 (s, 3H), 1.96 (s, 6H), 1.60 (s, 6H).HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 1 mL / min, 254 nm, τ_R (major) = 12.5 min, τ_R (minor) = 21.1 min.

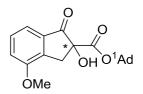

1-Adamantyl 2-*hydroxy-5-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate*(**2b**); white solid; mp:152-156 °C; (35.1 mg, 97% yield, 87% ee); $[a]_D^{25}$ 67.5 (*c* 0.54, CHCl₃). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 1.7 Hz, 1H), 7.40 (dd, *J* = 8.2, 1.7 Hz, 1H), 4.00 (s, 1H), 3.62 (d, *J* = 17.3 Hz, 1H), 3.19 (d, *J* = 17.3 Hz, 1H), 2.13 (m, 3H), 1.97 (s, 6H), 1.60 (sz, 6H). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 1 mL / min, 254 nm, τ_R (major) = 12.6 min, τ_R (minor) = 21.9 min.


1-Adamantyl 2-hydroxy-5-bromine-1-oxo-2,3-dihydro-1H-indene-2-carboxylate(**2c**); white was; (38.5 mg, 96% yield, 83% ee); $[\alpha]_D^{25}$ 63.6 (*c* 0.69, CHCl₃);¹H NMR (500 MHz, Chloroform-*d*) δ 7.72 – 7.61 (m, 2H), 7.56 (d, *J* = 8.2 Hz, 1H), 4.05 (s, 1H), 3.63 (d, *J* = 17.3 Hz, 1H), 3.20 (d, *J* = 17.3 Hz, 1H), 2.13 (s, 3H), 1.97 (s, 6H), 1.60 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 200.24, 169.77, 153.77, 132.85, 131.62, 131.28, 129.60, 126.13, 84.27, 80.40,

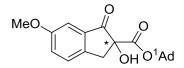
40.93, 39.19, 35.84, 30.82. HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 1 mL / min, 254 nm, τ_R (major) = 14.1 min, τ_R (minor) = 22.5 min. HRMS calcd. for $[C_{20}H_{21}BrO_4+Na]^+$ requires m/z 427.0521, found m/z 427.0530.


1-Adamantyl 2-hydroxy-4-bromine-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2d); colorless oil; (35.8 mg, 88% yield, 89% ee); $[\alpha]_D^{25}$ 48.5 (*c* 0.64, CHCl₃);¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 – 7.69 (m, 2H), 7.33 (t, *J* = 7.7 Hz, 1H), 4.05 (s, 1H), 3.60 (d, *J* = 17.6 Hz, 1H), 3.14 (d, *J* = 17.6 Hz, 1H), 2.20 – 2.05 (s, 3H), 1.98 (s, 6H), 1.61 (s, 6H). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 0.8 mL / min, 254 nm, τ_R (major) = 13.2 min, τ_R (minor) = 15.2 min.

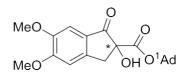
1-Adamantyl 2-*hydroxy-6-bromine-1-oxo-2,3-dihydro-1H-indene-2-carboxylate*(**2e**); colorless oil; (37.1 mg, 92% yield, 85% ee); $[a]_D^{25}$ -19.3 (*c* 0.68, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 1.9 Hz, 1H), 7.74 (dd, *J* = 8.1, 1.9 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 4.01 (s, 1H), 3.59 (d, *J* = 17.2 Hz, 1H), 3.15 (d, *J* = 17.2 Hz, 1H), 2.20 – 2.08 (m, 3H), 1.96 (m, 6H), 1.60 (m, 6H). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 1.0 mL / min, 254 nm, τ_R (major) = 11.8 min, τ_R (minor) = 23.5 min.

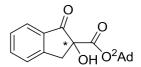


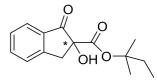
1-Adamantyl 2-hydroxy-6-fluorine-1-oxo-2,3-dihydro-1H-indene-2-carboxylate(**2f**); colorless oil; (30.9 mg, 89% yield, 85% ee); $[a]_D^{25}$ 18.4 (*c* 0.57, CHCl₃)¹H NMR (500 MHz, Chloroform-*d*) δ 7.48 – 7.40 (m, 2H), 7.39 – 7.33 (m, 1H), 4.04 (s, 1H), 3.61 (d, *J* = 16.9 Hz, 1H), 3.18 (d, *J* = 16.9 Hz, 1H), 2.20 – 2.08 (m, 3H), 1.96 (m, 6H), 1.60 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 200.62, 169.81, 163.36, 161.38, 147.77, 135.73, 127.71, 123.57 110.84, 84.21, 81.16, 40.92, 39.03, 35.83, 30.81. HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 1.0 mL / min, 254 nm, τ_R (major) = 9.9 min, τ_R (minor) = 19.4 min. HRMS calcd. for [C₂₀H₂₁FO₄+Na]⁺ requires m/z 367.1322, found m/z 367.1307.

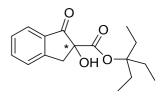


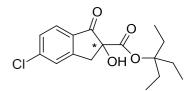
1-Adamantyl 2-*hydroxy-6-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate*(**2g**); white wax; (32.9 mg, 97% yield, 82% ee); $[\alpha]_D{}^{25}$ 39.7 (*c* 0.56, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58 (s, 1H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 7.8 Hz, 1H), 4.00 (s, 1H), 3.61 (d, *J* = 16.9 Hz, 1H), 3.15 (d, *J* = 16.9 Hz, 1H), 2.41 (s, 3H), 2.14 – 2.06 (m, 3H), 1.97 (m, 6H), 1.60 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 200.45, 169.32, 148.77, 136.84, 136.05, 133.07, 124.89, 123.90, 82.76, 79.78, 39.90, 38.22, 34.85, 29.79, 20.08. HPLC conditions: Chiralcel

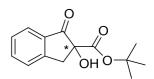

AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 1.0 mL / min, 254 nm, τ_R (major) = 10.9 min, τ_R (minor) = 20.7 min. HRMS Calcd. for $[C_{21}H_{24}O_4+Na]^+$ requires m/z 363.1572, found m/z 363.1560.

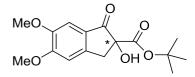

1-Adamantyl 2-hydroxy-4-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate(**2h**); white wax ; (33.1 mg, 93% yield, 84% ee); $[\alpha]_D^{25}$ 44.8 (*c* 0.61, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.42 – 7.33 (m, 2H), 7.09 (dd, *J* = 5.3, 3.6 Hz, 1H), 4.00 (s, 1H), 3.91 (s, 3H), 3.59 (d, *J* = 17.5 Hz, 1H), 3.07 (d, *J* = 17.5 Hz, 1H), 2.22 – 2.04 (m, 3H), 1.98 (m, 6H), 1.60 (m, 6H). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 1.0 mL / min, 254 nm, τ_R (major) = 15.9 min, τ_R (minor) = 22.7 min.

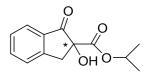

1-Adamantyl 2-hydroxy-6-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate(**2i**); white wax ; (35.0 mg, 98% yield, 85% ee); $[a]_D^{25}$ 22.6 (*c* 0.67, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 8.2 Hz, 1H), 7.26 – 7.19 (m, 2H), 4.03 (s, 1H), 3.58 (d, *J* = 16.8 Hz, 1H), 3.13 (d, *J* = 16.7 Hz, 1H), 2.24 – 2.07 (m, 3H), 1.98 (d, *J* = 3.0 Hz, 6H), 1.60 (t, *J* = 3.0 Hz, 6H). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 1.0 mL / min, 254 nm, τ_R (major) = 13.5 min, τ_R (minor) = 23.7 min.

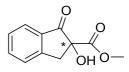

1-Adamantyl 2-hydroxy-5,6-di-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate(**2j**); yellow solid: mp:145-148 °C;(37.5 mg, 97% yield, 88% ee); $[\alpha]_D^{25}$ 71.8 (*c* 0.71, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.19 (s, 1H), 6.89 (s, 1H), 4.05 (s, 1H), 3.99 (s, 3H), 3.92 (s, 3H), 3.58 (d, *J* = 16.9 Hz, 1H), 3.12 (d, *J* = 16.9 Hz, 1H), 2.21 – 2.09 (m, 3H), 2.00 (m, 6H), 1.61 (m, 6H). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 1.0 mL / min, 254 nm, τ_R (major) = 22.1 min, τ_R (minor) = 38.7 min.

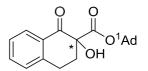

2-Adamantyl 2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (**2k**); white wax ; (31.6 mg, 97% yield, 81% ee); $[\alpha]_D{}^{25}$ 20.6 (*c* 0.54, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 7.4 Hz, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 4.95 (t, *J* = 3.5 Hz, 1H), 4.06 (s, 1H), 3.71 (d, *J* = 17.0 Hz, 1H), 3.30 (d, *J* = 17.0 Hz, 1H), 1.94 – 1.56 (m, 10H), 1.44 – 1.27 (m, 4H). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 1.0 mL / min, 254 nm, τ_R (major) = 11.7 min, τ_R (minor) = 14.7 min.

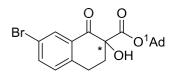

tert-pentyl 2-*hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate* (**2**I);colorless oil; (25.1 mg, 96% yield, 78% ee); $[\alpha]_D^{25}$ 36.5 (*c* 0.42, CHCl₃)¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, J = 7.7 Hz, 1H), 7.64 (td, J = 7.5, 1.2 Hz, 1H), 7.47 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 4.02 (s, 1H), 3.64 (d, J = 17.1 Hz, 1H), 3.23 (d, J = 17.1 Hz, 1H), 1.58 (t, J = 7.5 Hz, 2H), 1.34 (d, J = 4.4 Hz, 6H), 0.62 (t, J = 7.5 Hz, 3H). HPLC conditions: Chiralcel OD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 95 / 5, 0.8 mL / min, 254 nm, τ_R (major) = 11.5 min, τ_R (minor) = 12.4 min.

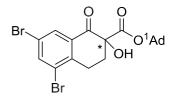

3-ethyl amyl 2-hydroxy-1-oxo-2,3-dihydro-1H-ind-ene-2-carboxylate (**2m**);colorless oil; (29.5 mg, 99% yield, 70% ee); $[\alpha]_D^{25}$ 26.7 (*c* 0.25, CHCl₃) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.80 (d, J = 7.6 Hz, 1H), 7.64 (dd, J = 7.4, 1.3 Hz, 1H), 7.48 (dt, J = 7.8, 0.9 Hz, 1H), 7.42 (td, J = 7.5, 0.9 Hz, 1H), 4.04 (s, 1H), 3.64 (d, J = 16.9 Hz, 1H), 3.34 – 3.17 (d, J = 16.9 Hz, 1H), 1.70 (q, J = 7.5 Hz, 6H), 0.65 (t, J = 7.5 Hz, 9H). HPLC conditions: Chiralcel AS-H column (250 × 4.6 mm), hexane / *i*-PrOH = 9 / 1, 1.0 mL / min, 254 nm, τ_R (major) = 11.6 min, τ_R (minor) = 14.0 min.

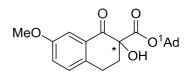

3-ethyl amyl 2-hydroxy-5- chloro -1-oxo-2,3-dihydro-1H-ind-ene-2-carboxylate (**2n**); white wax; (29.5 mg, 97% yield, 69% ee); $[\alpha]_D^{25}$ 24.3 (*c* 0.23, CHCl₃) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 1.7 Hz, 1H), 7.40 (dd, *J* = 8.3, 1.7 Hz, 1H), 4.07 (s, 1H), 3.61 (d, *J* = 17.2 Hz, 1H), 3.23 (d, *J* = 17.2 Hz, 1H), 1.71 (q, *J* = 7.5 Hz, 6H), 0.67 (t, *J* = 7.5 Hz, 9H). HPLC conditions: Chiralcel AS-H column (250 × 4.6 mm), hexane / *i*-PrOH = 9 / 1, 1.0 mL / min, 254 nm, τ_R (major) = 7.9 min, τ_R (minor) = 10.5 min.

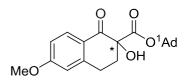

tert-butyl 2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate(**20**); white solid; mp 128-129 °C. (24.1 mg, 97% yield, 76% ee); $[\alpha]_D^{25}$ 25.3 (*c* 0.15, CHCl₃) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 7.7 Hz, 1H), 7.64 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.48 (dt, *J* = 7.6, 1.0 Hz, 1H), 7.42 (td, *J* = 7.5, 1.0 Hz, 1H), 3.99 (s, 1H), 3.65 (dd, *J* = 17.0, 0.8 Hz, 1H), 3.30 – 3.16 (m, 1H), 1.36 (s, 9H). HPLC conditions: Chiralcel OD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 9 / 1, 1.0 mL / min, 254 nm, τ_R (major) = 6.6 min, τ_R (minor) = 7.3 min.


tert-butyl 2-*hydroxy-5,6-di-methoxyl* -1-*oxo-2,3-dihydro-1H-indene-2-carboxylate*(**2p**); light yellow oil; (28.2 mg, 92% yield, 72% ee); $[a]_D^{25}48.2$ (*c* 0.55, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.19 (s, 1H), 6.89 (s, 1H), 4.00 (s, 3H), 3.92 (s, 3H), 3.57 (d, *J* = 16.8 Hz, 1H), 3.12 (d, *J* = 16.8 Hz, 1H), 1.39 (s, 9H). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 9 / 1, 1.0 mL / min, 254 nm, τ_R (major) = 36.9 min, τ_R (minor) = 41.3 min.

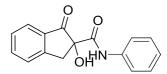

Isopropyl 2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (**2q**); white solid ; mp 67-71 °C; (22.5 mg, 96% yield, 65% ee); $[\alpha]_D^{25}$ 27.3 (*c* 0.23, CHCl₃) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 7.7 Hz, 1H), 7.67 (td, *J* = 7.5, 1.2 Hz, 1H), 7.49 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.46 – 7.39 (m, 1H), 5.15 – 4.99 (m, 1H), 3.70 (d, *J* = 17.4 Hz, 1H), 3.24 (d, *J* = 17.2 Hz, 1H), 1.20 (d, *J* = 6.2 Hz, 3H), 1.13 (d, *J* = 6.2 Hz, 3H). HPLC conditions: Chiralcel OD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 95 / 5, 1.0 mL / min, 254 nm, τ_R (major) = 9.8 min, τ_R (minor) = 10.8 min.


Methyl 2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (**2r**); white solid ; mp 134-136 °C; (20.2 mg, 98% yield, 62% ee); $[\alpha]_D^{25}$ 47.4 (*c* 0.25, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 7.7 Hz, 1H), 7.67 (td, *J* = 7.5, 1.2 Hz, 1H), 7.54 – 7.40 (m, 2H), 3.74 (m, 4H), 3.26 (d, *J* = 17.2 Hz, 1H). HPLC conditions: Chiralcel OD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 9 / 1, 1.0 mL / min, 254 nm, τ_R (major) = 12.1 min, τ_R (minor) = 14.4 min.

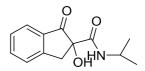

1-Adamantyl 2-*hydroxy-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate*(**2s**);colorless oil; (29.8 mg, 92% yield, 74% ee); $[a]_{D}^{25}$ -5.4 (*c* 0.51, CHCl₃);¹H NMR (500 MHz, Chloroform-*d*) δ 8.04 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.52 (td, *J* = 7.5, 1.4 Hz, 1H), 7.34 (s, 1H), 7.27 – 7.24 (m, 1H), 4.22 (s, 1H), 3.12 (m, 2H), 2.65 (d, *J* = 13.5 Hz, 1H), 2.22 (m, 1H), 2.17 – 2.08 (m, 3H), 2.01 (d, *J* = 3.0 Hz, 6H), 1.68 – 1.54 (m, 6H). HPLC conditions: Chiralcel OD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 9 / 1, 1.0 mL / min, 254 nm, τ_{R} (major) = 7.8 min, τ_{R} (minor) = 10.8 min.


1-Adamantyl 2-*hydroxy*-7-*bromine-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate*(**2t**); colorless oil; (37.1 mg, 89% yield, 68% ee); $[\alpha]_{D}^{25}$ -19.3 (*c* 0.68, CHCl₃);¹H NMR (500 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 2.2 Hz, 1H), 7.62 (dd, *J* = 8.2, 2.2 Hz, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 4.17 (s, 1H), 3.19 – 2.97 (m, 2H), 2.61 (m, 1H), 2.30 – 2.19 (m, 1H), 2.18 – 2.10 (m, 3H), 2.02 (m, 6H), 1.62 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 193.58, 169.48, 142.55, 136.76, 132.24, 130.62, 130.58, 120.81, 83.85, 41.02, 35.91, 32.60, 30.83, 25.31. HPLC conditions: Chiralcel OD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 9 / 1, 1.0 mL / min, 254 nm, τ_R (major) = 7.7 min, τ_R (minor) = 11.6 min. HRMS Calcd. for $[C_{21}H_{23}BrO_4+Na]^+$ requires m/z 441.0677, found m/z 441.0682.

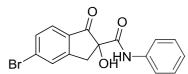
1-Adamantyl 2-*hydroxy*-5,7-*di-bromine-1-oxo*-1,2,3,4-*tetrahydronaphthalene-2-carboxylate* (**2u**); colorless oil; (34.8 mg, 70% yield,71% ee); $[\alpha]_D^{25}$ -2.1 (*c* 0.27, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.13 (d, *J* = 2.0 Hz, 1H), 7.93 (d, *J* = 2.0 Hz, 1H), 4.12 (s, 1H), 3.19 – 2.91 (m, 2H), 2.63 (m, 1H), 2.23 (m, 1H), 2.18 – 2.12 (m, 3H), 2.01 (m, 6H), 1.63 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 192.78, 169.04, 141.72, 139.75, 133.53, 130.05, 125.30, 120.98, 84.13, 41.02, 35.89, 31.64, 30.84, 26.38. HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 9 / 1, 1.0 mL / min, 254 nm, τ_R (major) = 10.1 min, τ_R (minor) = 18.2 min. HRMS Calcd. for $[C_{21}H_{23}Br_2O_4+Na]^+$ requires m/z 518.9783, found m/z 518.9775.

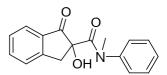


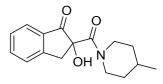
1-Adamantyl 2-hydroxy-7-methoxyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (**2v**); light yellow wax; (34.1 mg, 93% yield, 80% ee); $[\alpha]_D^{25}$ -22.0 (*c* 0.66, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 (d, *J* = 2.8 Hz, 1H), 7.17 (d, *J* = 8.4 Hz, 1H), 7.10 (dd, *J* = 8.4, 2.8 Hz, 1H), 4.23 (s, 1H), 3.84 (s, 3H), 3.04 (dd, *J* = 7.4, 5.2 Hz, 2H), 2.67 – 2.56 (m, 1H), 2.25 – 2.19 (m, 1H), 2.17 – 2.09 (m, 3H), 2.02 (m, 6H), 1.61 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 194.88, 169.76, 158.42, 136.51, 131.41, 130.01, 122.64, 109.61, 83.44, 55.52, 41.00, 35.95, 33.09, 30.82, 24.98. HPLC conditions:Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 8/ 2, 1.0 mL / min, 254 nm, τ_R (major) = 13.6 min, τ_R (minor) = 22.9 min.HRMS Calcd. for [C₂₂H₂₆O₅+Na]⁺ requires m/z 393.1678, found m/z 393.1667.

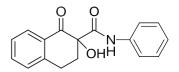


1-Adamantyl 2-hydroxy-6-methoxyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (**2w**); light yellow wax; (32.2 mg, 87% yield, 74% ee); $[\alpha]_D^{25}$ -8.3 (*c* 0.55, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 8.7 Hz, 1H), 6.86 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.70 (d, *J* = 2.5 Hz, 1H), 4.26 (s, 1H), 3.87 (s, 3H), 3.17 – 3.01 (m, 2H), 2.62 (m, 1H), 2.24 – 2.10 (m, 4H), 2.03 (m, 6H), 1.61 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 193.46, 169.89, 164.17, 146.49, 130.48, 124.10, 113.62, 112.55, 83.25, 55.50, 41.01, 35.96, 32.83, 30.82, 26.12. HPLC conditions:Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 8/ 2, 1.0 mL /

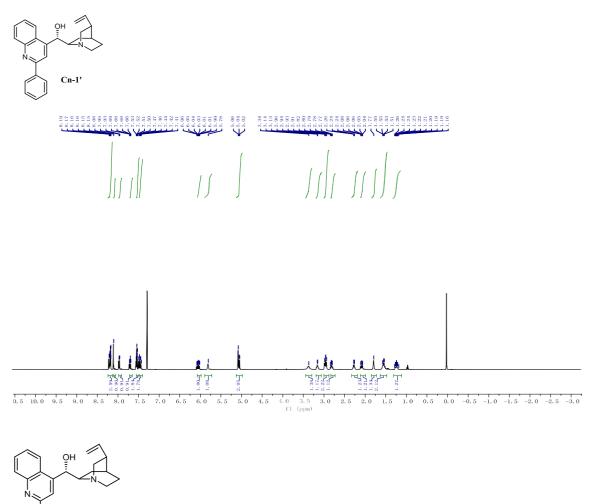

min, 254 nm, τ_R (major) = 21.3 min, τ_R (minor) = 29.8 min. HRMS Calcd. for $[C_{22}H_{26}O_5+Na]^+$ requires m/z 393.1678, found m/z 393.1666.


2-hydroxy-1-oxo-N-phenyl-2,3-dihydro-1H-indene-2-carboxamide (**5a**). white solid; mp 149-151 °C (24.6 mg, 92% yield, 39% ee). $[\alpha]_D^{25}$ 17.5 (*c* 0.31, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.76 (s, 1H), 7.77 (m, 1H), 7.65 (m, 1H), 7.50 (m, 2H), 7.41 (m, 1H), 7.31 – 7.24 (m, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 3.85 (d, *J* = 16.8 Hz, 1H), 3.17 (d, *J* = 16.8 Hz, 1H). HPLC conditions:Chiralcel OD-H column (250 × 4.6 mm), hexane / *i*-PrOH =9/ 1, 1.0 mL / min, 254 nm, τ_R (major) = 9.8 min, τ_R (minor) = 14.1 min.

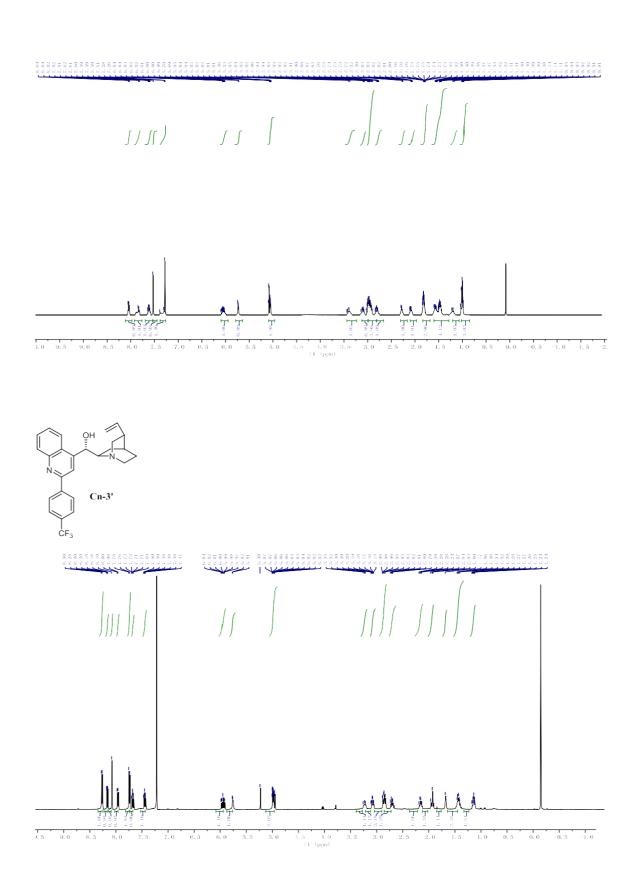

2-hydroxy-1-oxo-N-isopropyl-2,3-dihydro-1H-indene-2-carboxamide (**5b**). Colorless wax; (23.2 mg, 99% yield, 5% ee). $[a]_D^{25}$ -0.2 (*c* 0.21, CHCl₃) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.78 (d, *J* = 7.7 Hz, 1H), 7.65 (td, *J* = 7.5, 1.3 Hz, 1H), 7.54 – 7.35 (m, 2H), 6.63 (s, 1H), 4.07 – 3.90 (m, 1H), 3.73 (d, *J* = 16.7 Hz, 1H), 3.11 (d, *J* = 16.7 Hz, 1H), 1.17 (m, 6H). HPLC conditions:Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH =8/2, 1.0 mL / min, 254 nm, τ_R (major) = 4.6 min, τ_R (minor) = 5.5 min.

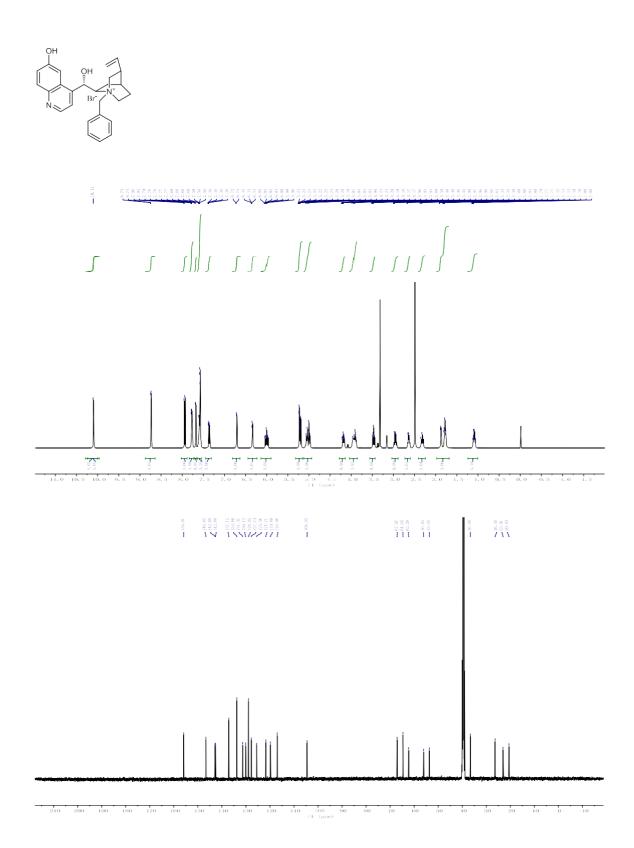

2-hydroxy-1-oxo-5-bromine-N-phenyl-2,3-dihydro-1H-indene-2-carboxamide (**5c**). Colorless wax; (32.4 mg, 94% yield, 52% ee). $[\alpha]_D^{25}$ 35.3 (*c* 0.25, CHCl₃) ¹H NMR (400 MHz, Chloroform-*d*) δ 8.72 (s, 1H), 8.13 – 7.94 (m, 1H), 7.74 – 7.28 (m, 7H), 7.13 (t, *J* = 7.4 Hz, 1H), 3.84 (d, *J* = 16.9 Hz, 1H), 3.18 (d, *J* = 16.9 Hz, 1H). HPLC conditions: Chiralcel OD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 80 / 20, 1 mL / min, 254 nm, τ_R (major) = 11.8 min, τ_R (minor) =15.4 min.

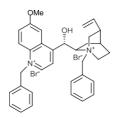
2-hydroxy-1-oxo-N-phenyl- N-methyl-2,3-dihydro-1H-indene-2-carboxamide (5d). white wax; (20.5 mg, 73% yield, 66% ee). $[\alpha]_D^{25}$ -19.7 (*c* 0.26, CHCl₃)¹H NMR (500 MHz, Chloroform-*d*) δ 7.49 – 7.30 (m, 2H), 7.23 – 6.74 (m, 7H), 5.40 (s, 1H), 3.55 (d, *J* = 18.0 Hz, 1H), 3.40 – 3.24 (m, 3H), 3.12 (d, *J* = 18.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 202.26, 171.33, 151.17, 135.02, 134.49, 129.05, 128.82, 127.31, 125.85, 124.76, 79.18, 41.53. HPLC conditions:Chiralcel OD-H column (250 × 4.6 mm), hexane / *i*-PrOH =9/1, 1.0 mL / min, 254 nm, τ_R (major) = 29.3 min, τ_R (minor) = 25.5 min. HRMS Calcd. for $[C_{17}H_{15}NO_3+Na]^+$ requires m/z 304.0950, found m/z 304.0939.

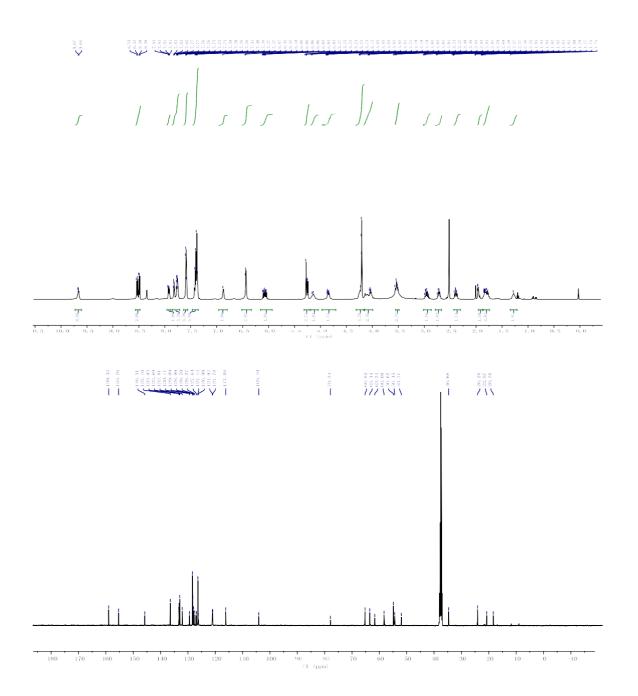


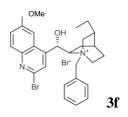
2-hydroxy-1-oxo-N-phenyl-N-4-methylpiperidine-2,3-dihydro-1H-indene-2-carboxamide (**5e**). colorless oil; (19.4 mg, 71% yield, 63% ee); $[\alpha]_D^{25}$ 18.6 (*c* 0.24, CHCl₃)¹H NMR (500 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 7.6 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.53 – 7.42 (m, 2H), 5.54 (s, 1H), 4.74 – 4.47 (m, 1H), 3.45 (d, *J* = 18.70 Hz, 1H), 3.31 (d, *J* = 18.0 Hz, 1H), 2.99 (s, 1H), 2.78 (m, 2H), 1.89 – 1.36 (m, 4H), 0.92 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 135.94, 134.13, 128.35, 127.00, 125.42, 41.00, 30.95, 29.69, 21.47. HPLC conditions:Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH =9/1, 1.0 mL / min, 254 nm, τ_R (major) = 34.9 min, τ_R (minor) = 29.9 min. HRMS Calcd. for $[C_{16}H_{19}NO_3+Na]^+$ requires m/z 296.1263, found m/z 296.1252.

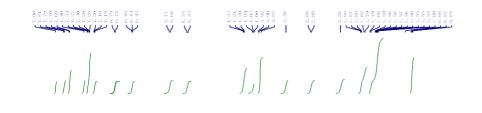


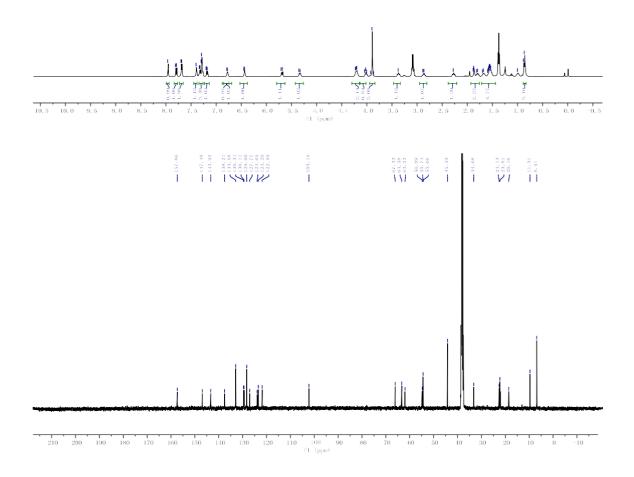

2-hydroxy-N-phenyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate(**5f**).brown oil; (23.6 mg, 84% yield, 25% ee); $[\alpha]_D^{25}$ -6.9 (c 0.49, CHCl₃) ¹H NMR (500 MHz, Chloroform-*d*) δ 8.81 (s, 1H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.54 (dd, *J* = 13.5, 7.8 Hz, 3H), 7.38 – 7.23 (m, 4H), 7.10 m, 1H), 4.84 (s, 1H), 3.62 (m, 1H), 3.06 – 2.92 (m, 1H), 2.61 (m, 1H), 2.33 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 197.05, 167.81, 145.69, 136.94, 134.65, 130.66, 129.01, 128.00, 126.72, 124.66, 119.64, 78.26, 77.28, 77.22, 34.63, 26.33. HPLC conditions:Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH =8/2, 1.0 mL / min, 254 nm, τ_R (major) = 14.4 min, τ_R (minor) = 18.6 min. HRMS Calcd. for $[C_{17}H_{15}NO_3+Na]^+$ requires m/z 304.0950, found m/z 304.0938.

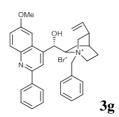

NMR spectra and HPLC

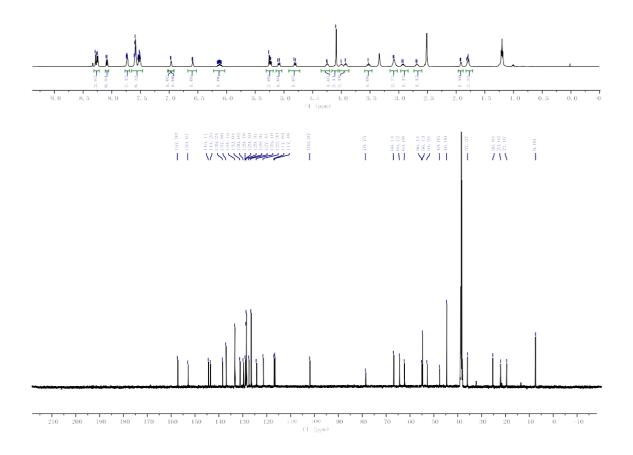


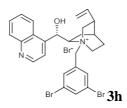

n-Bu Cn-2'

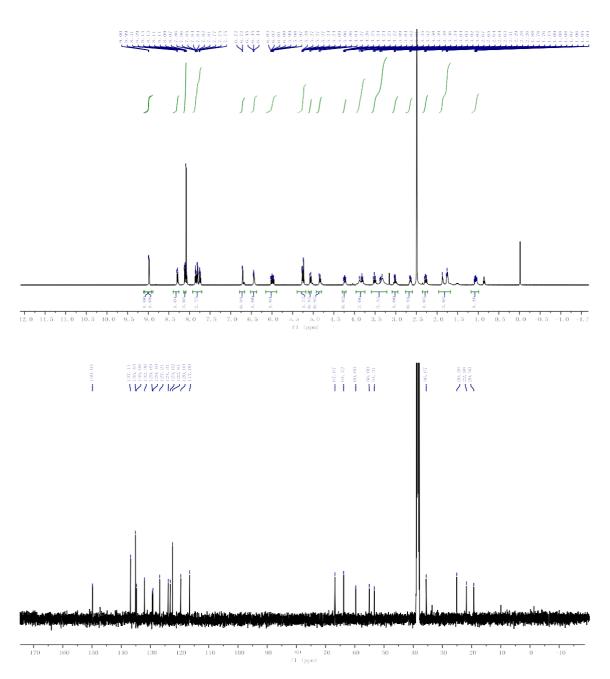


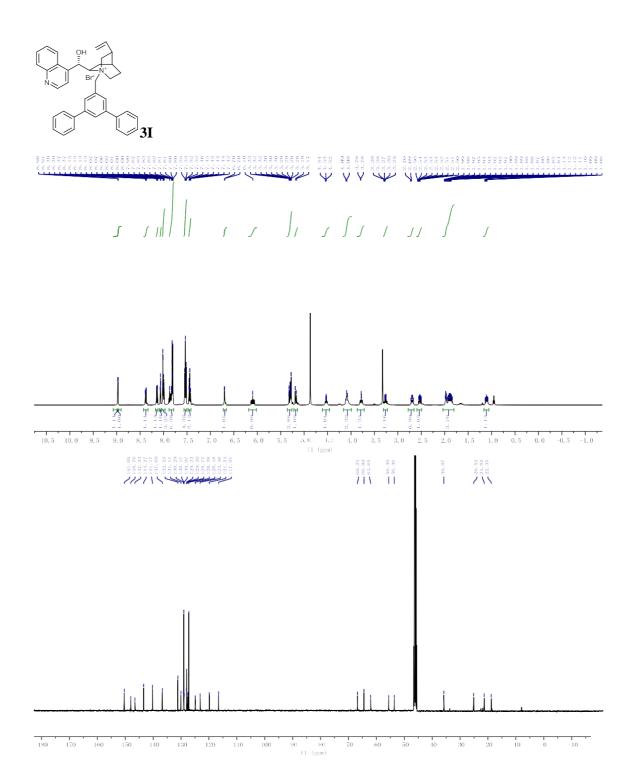


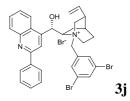


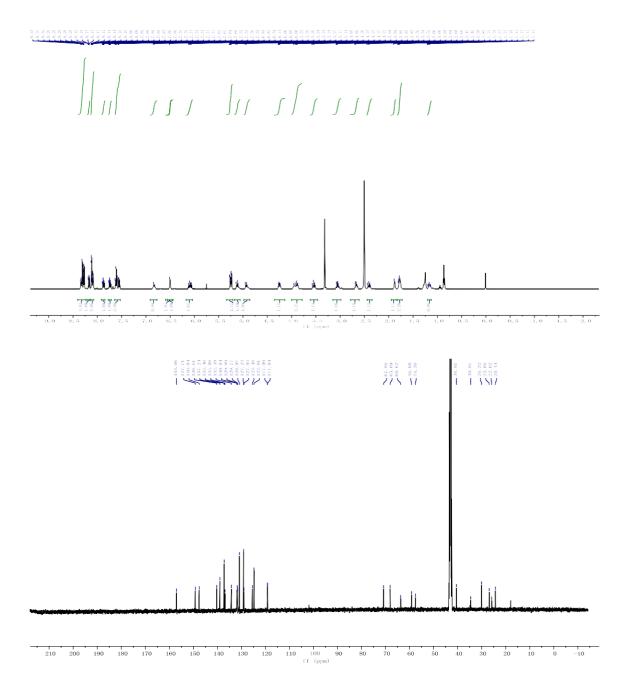


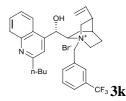


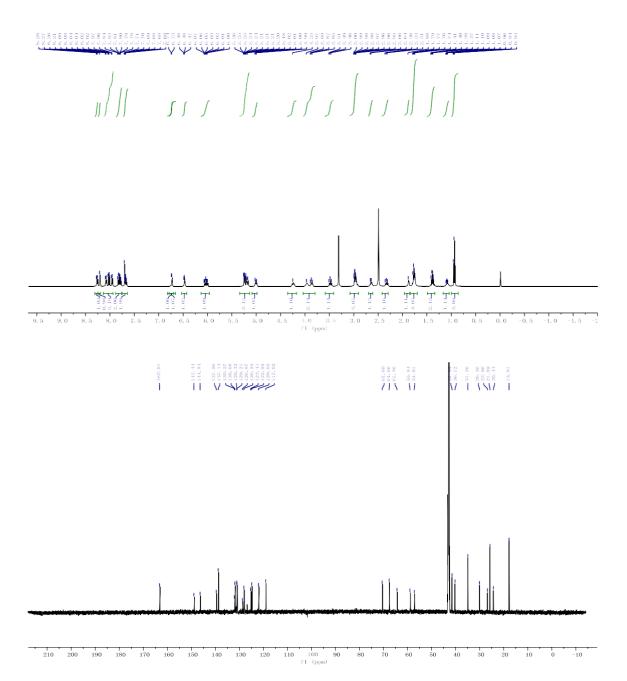


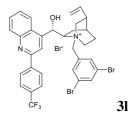


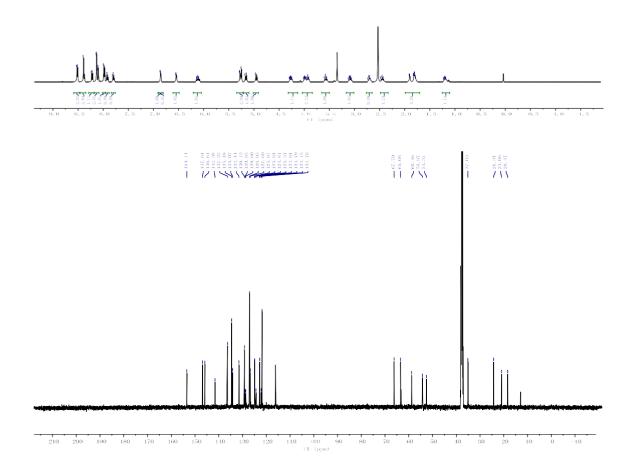


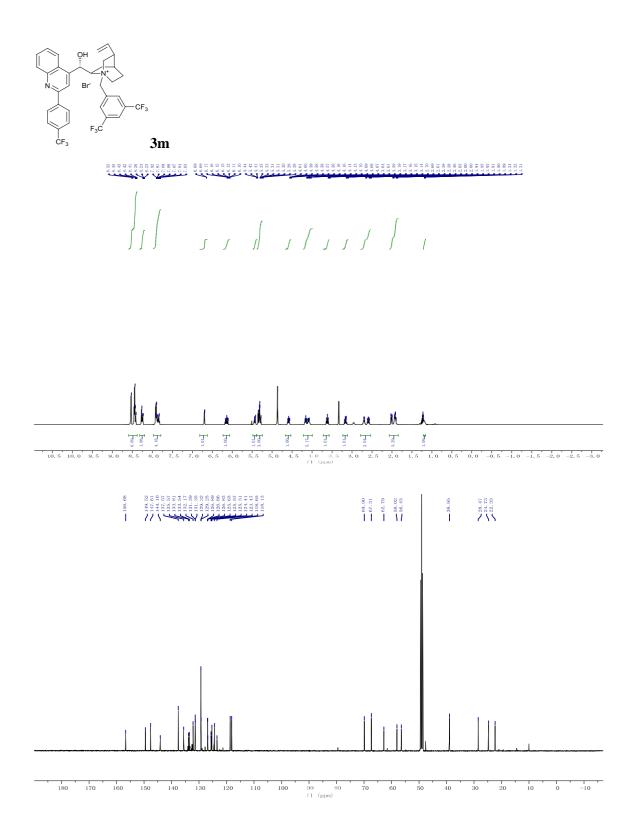


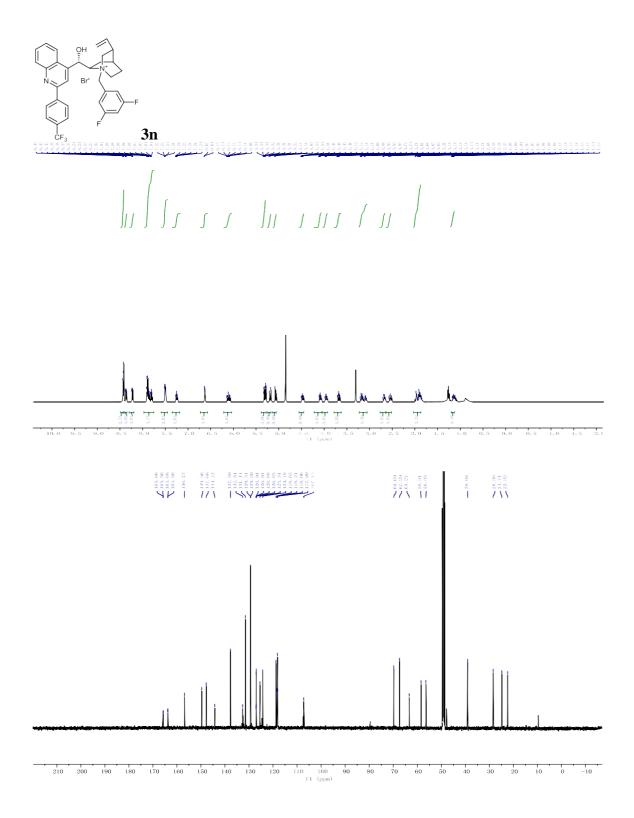


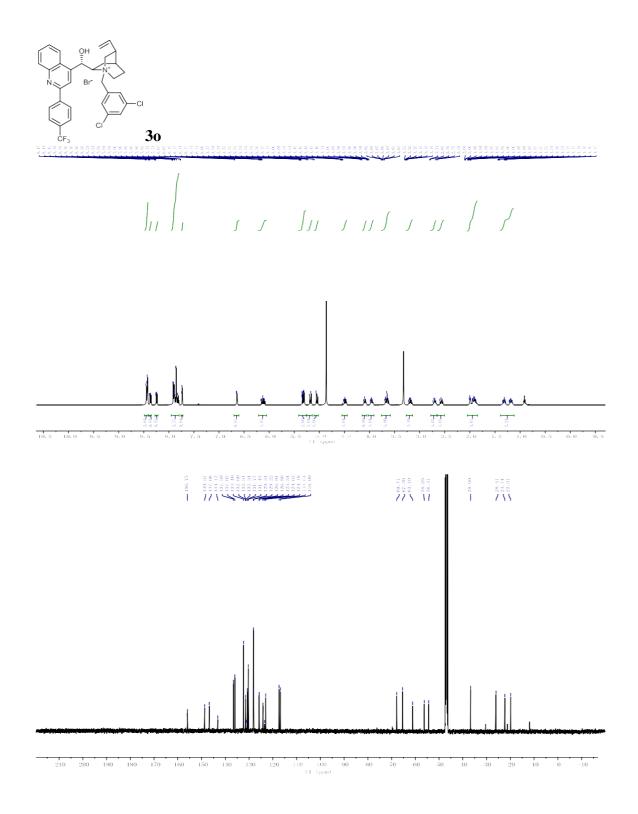


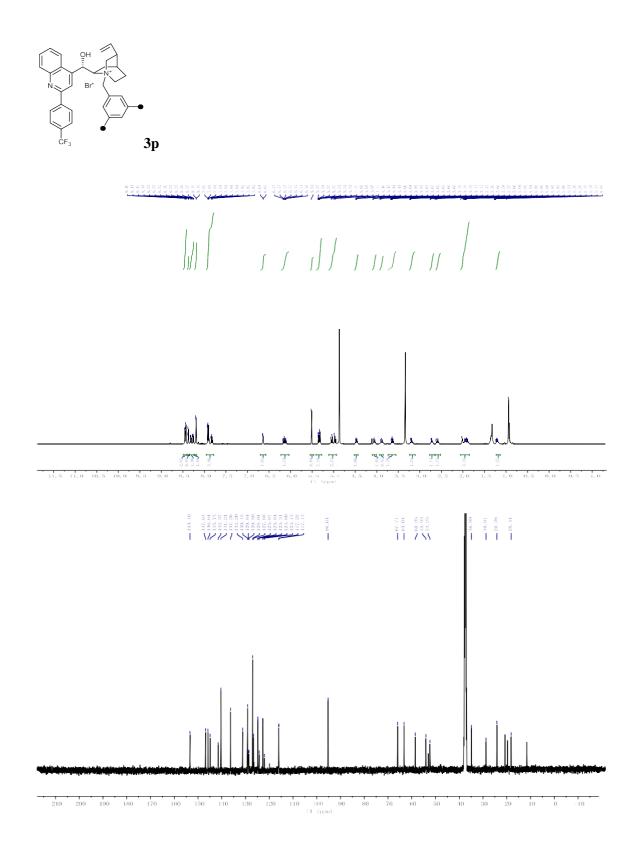




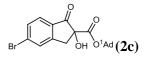


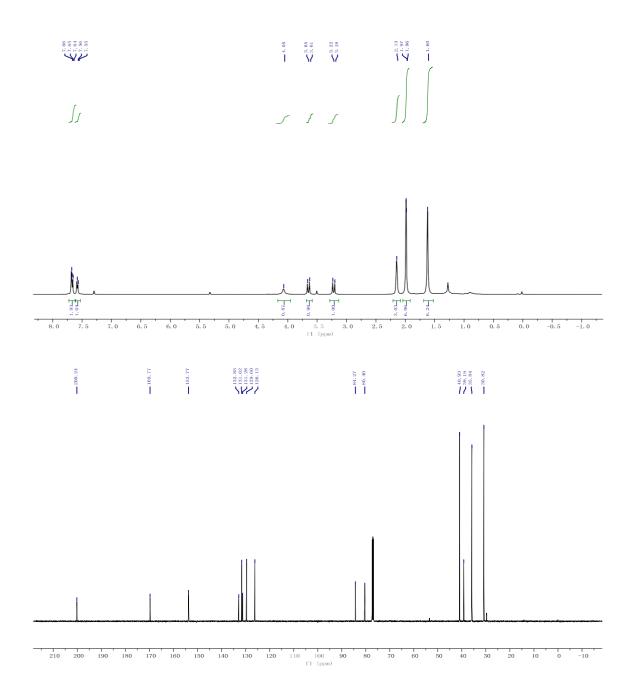


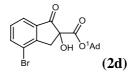


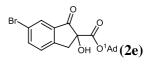




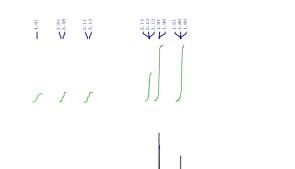


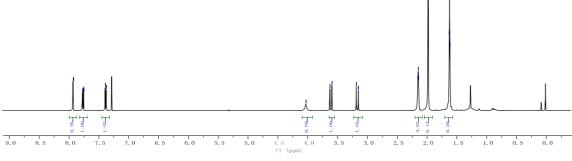


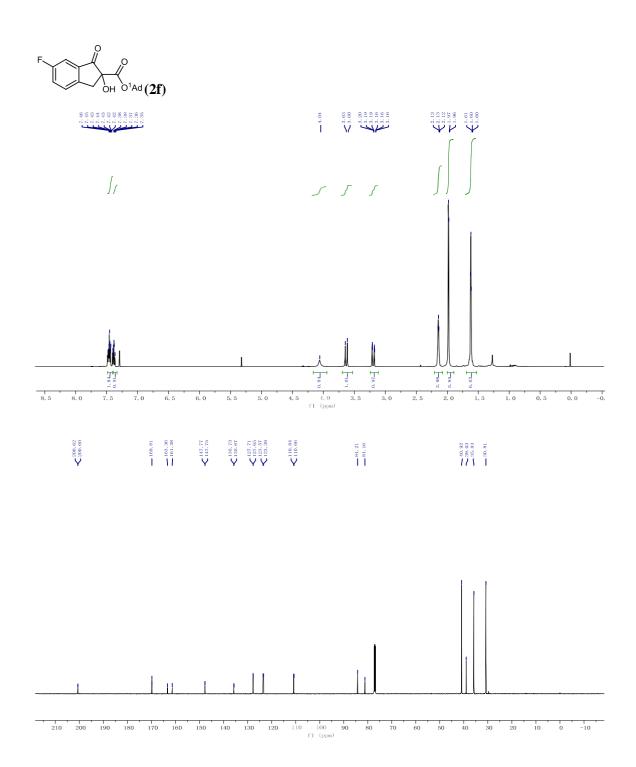


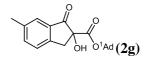


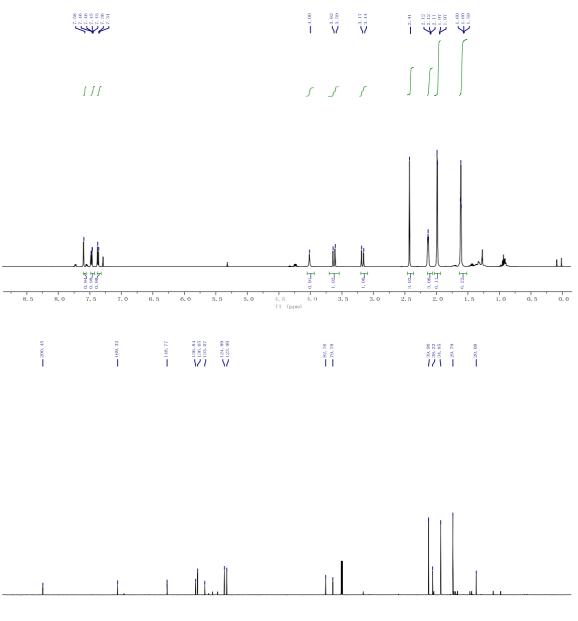
(2c)

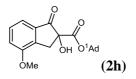


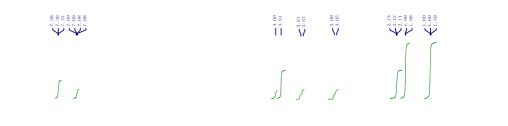


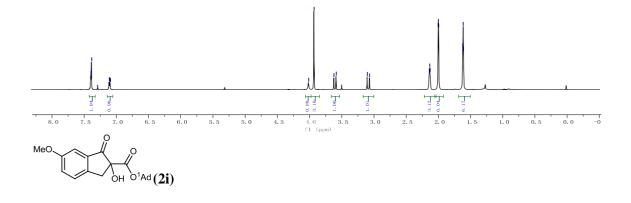



7, 91 7, 75 7, 75 7, 73 7, 73 7, 73 7, 73

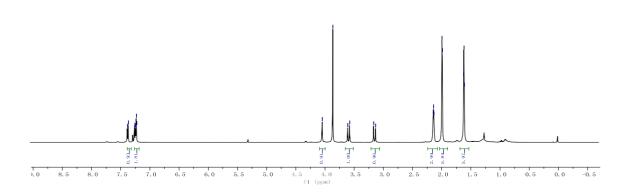

]]]

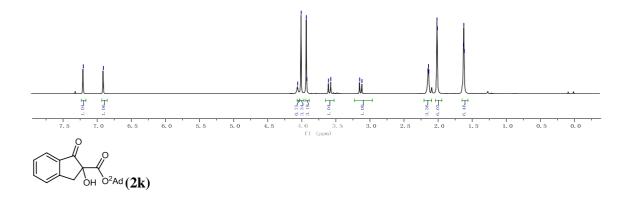


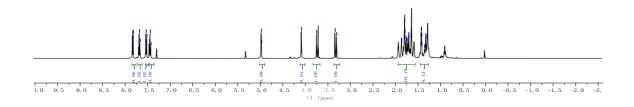


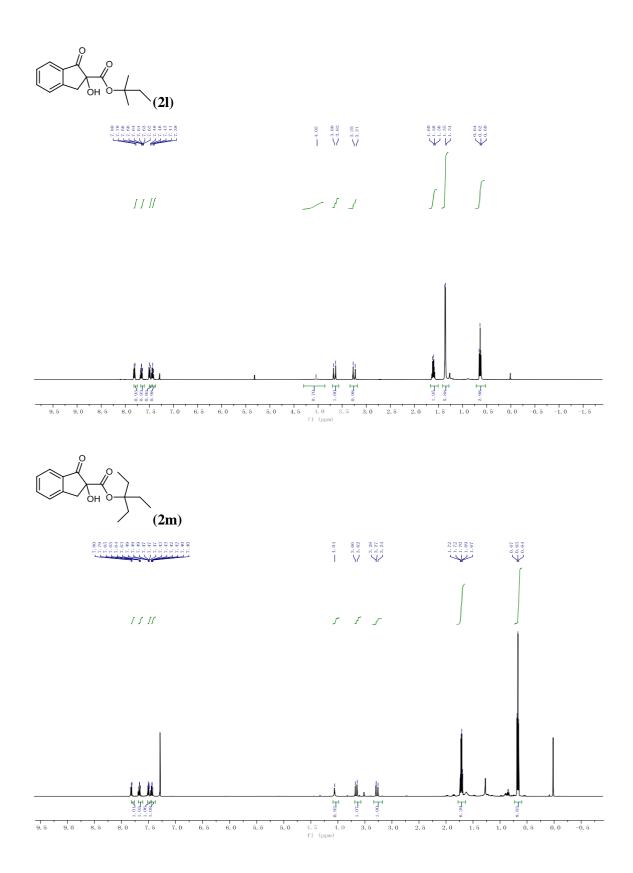


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ſ1 (ppm)

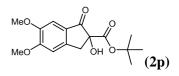


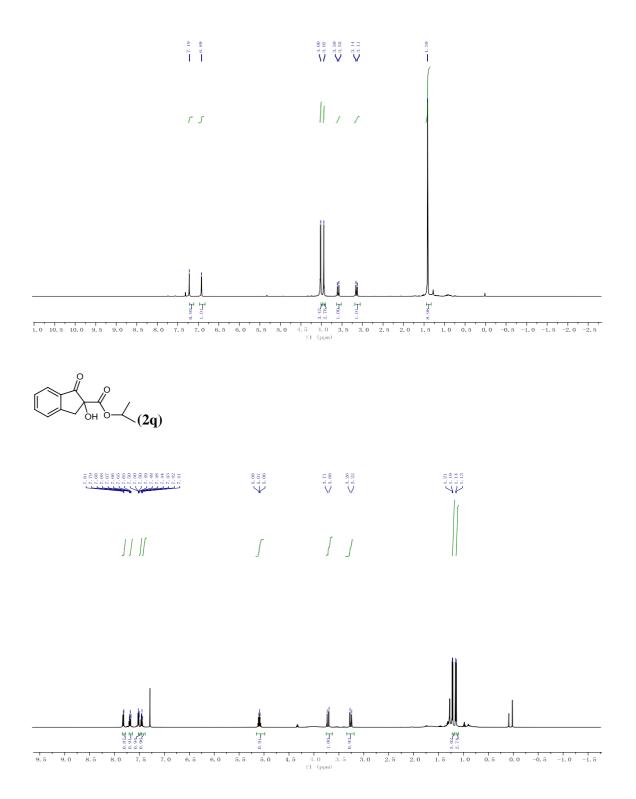


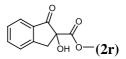


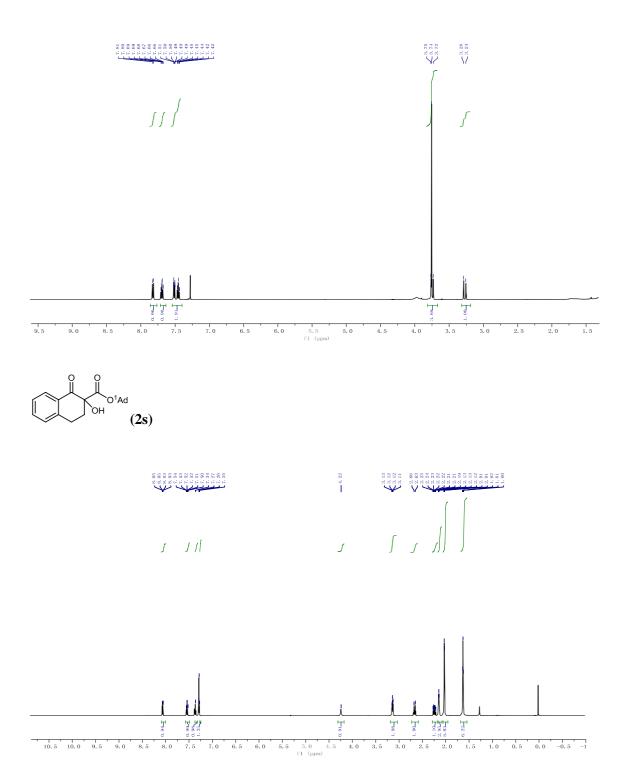


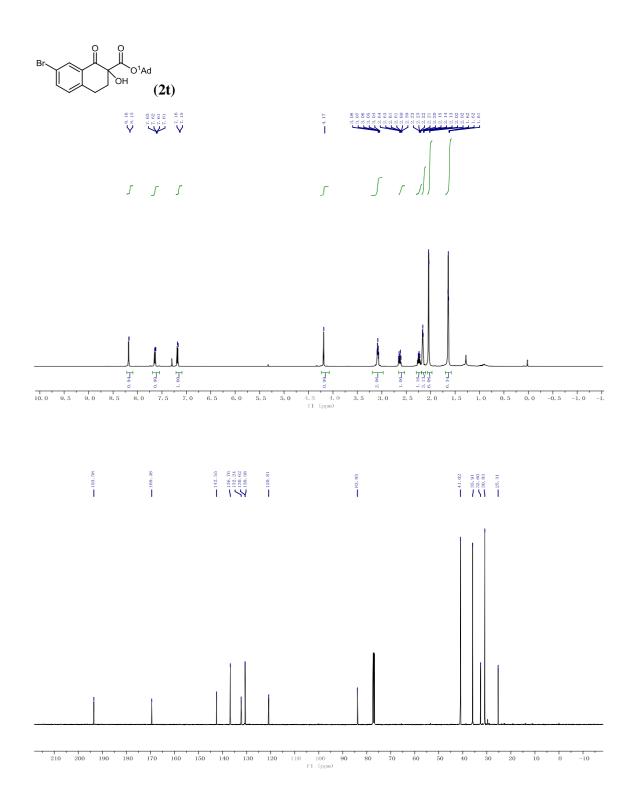


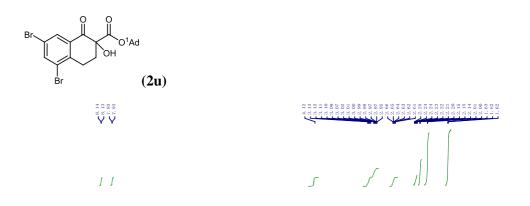


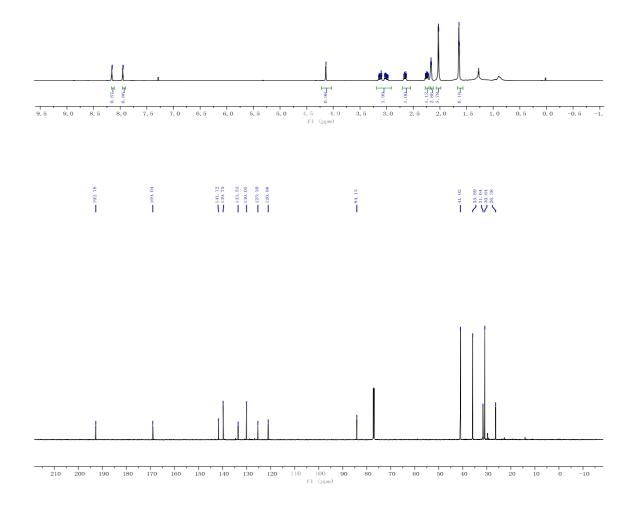


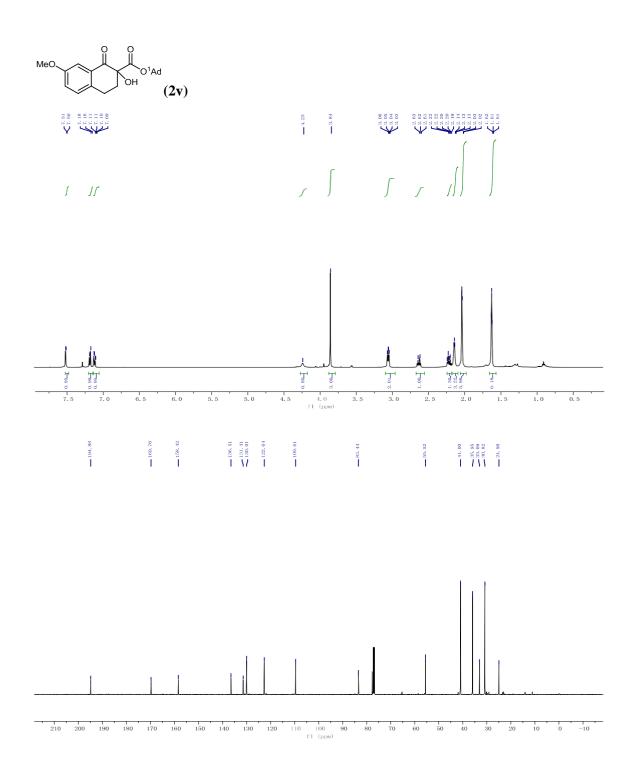


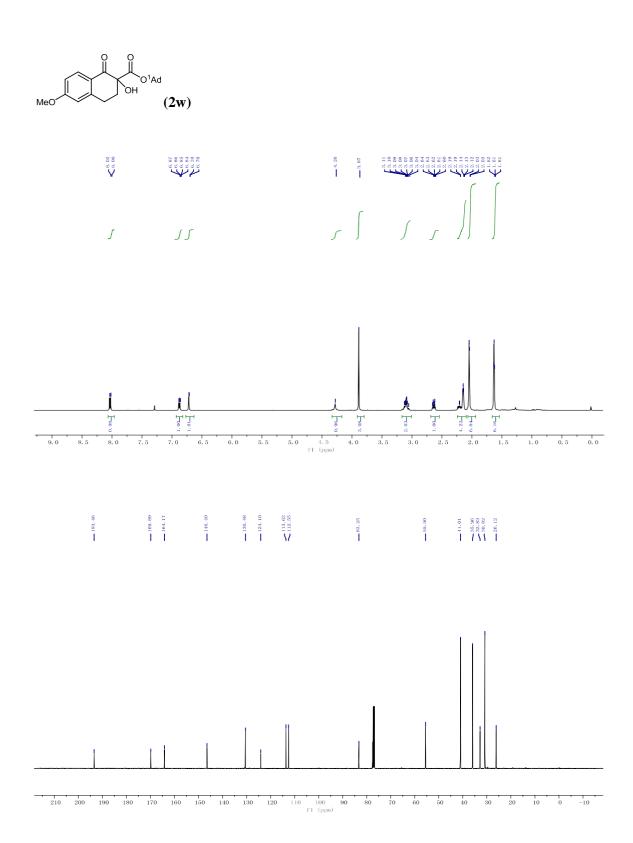


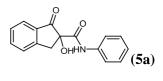


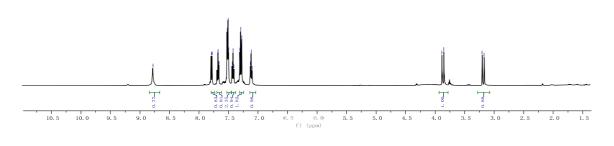


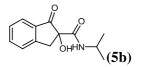


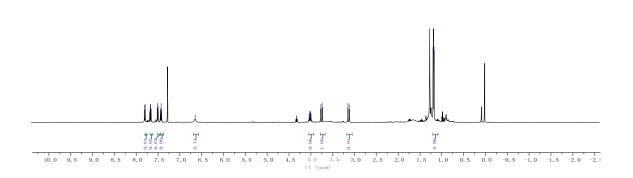


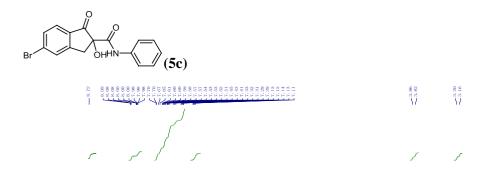


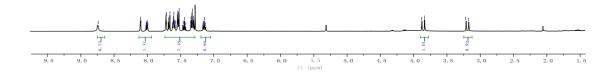


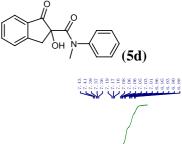


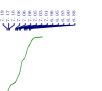


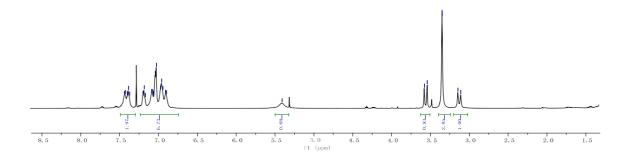


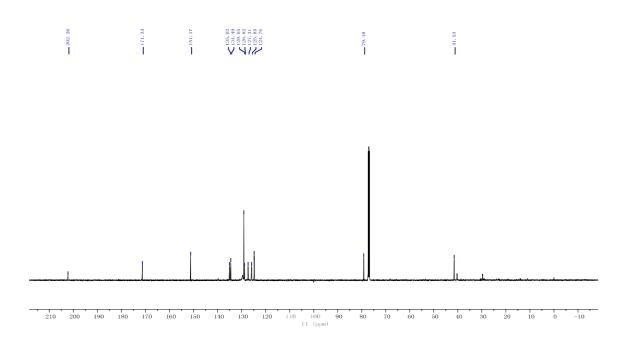


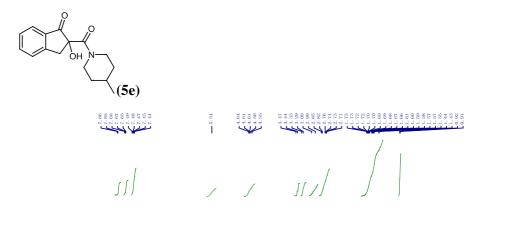


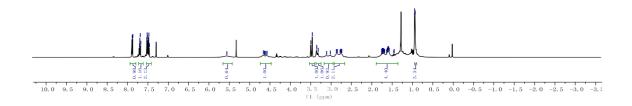

HIII I I I I

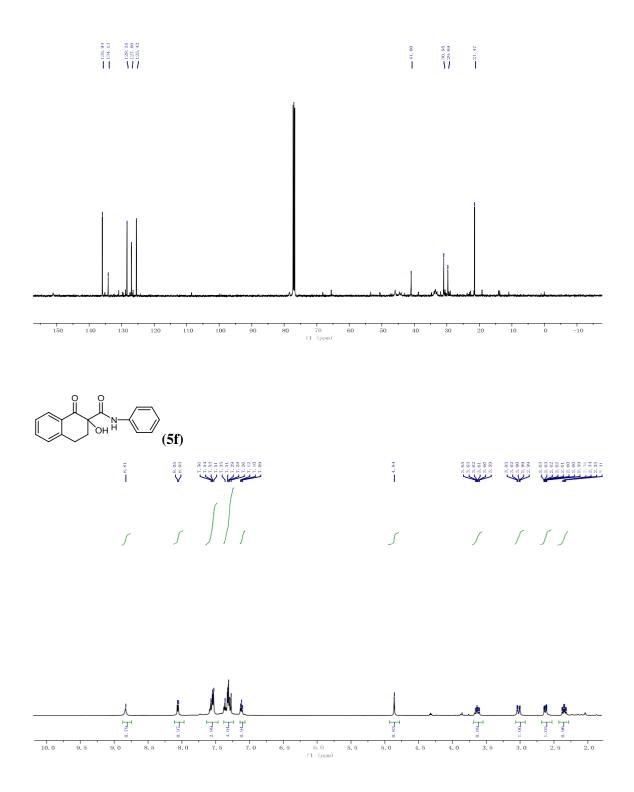


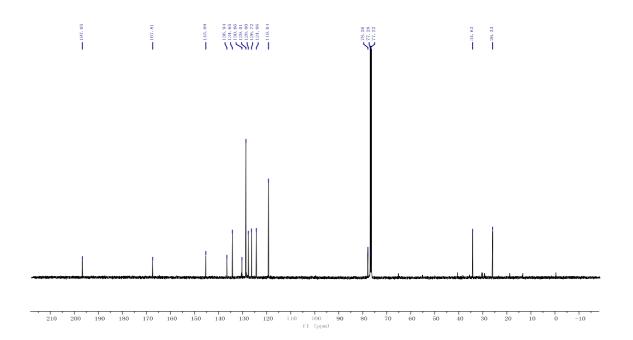


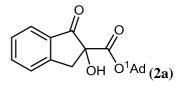

5.40

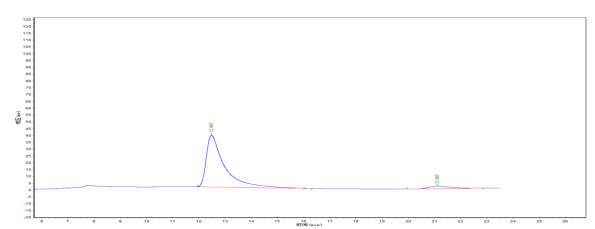


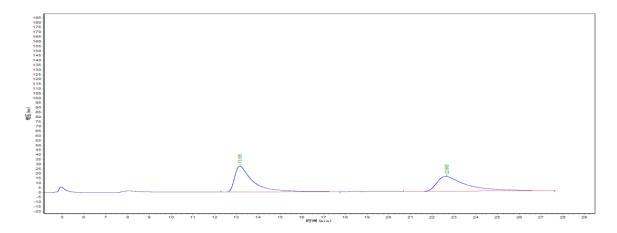


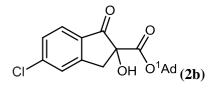


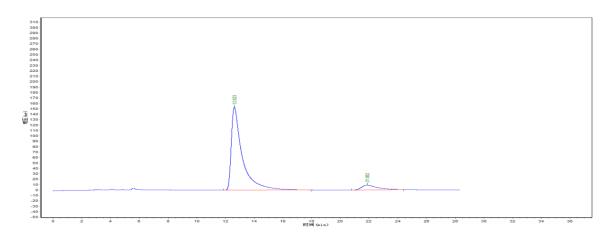




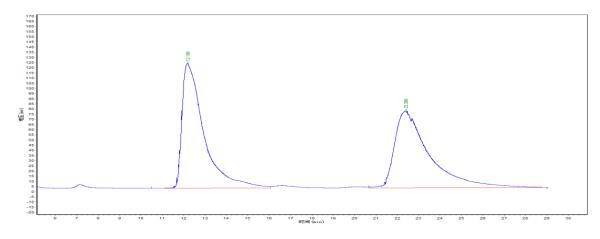


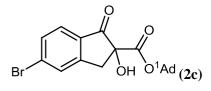


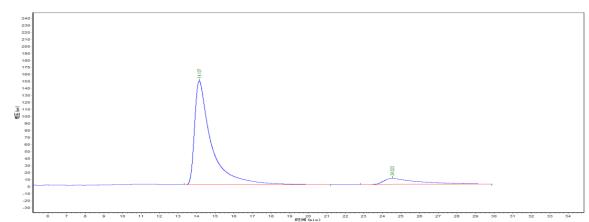



R.Time	Area	Area%
12.483	2090179.750	94.8473
21.097	113552.734	5.1527
	000/	

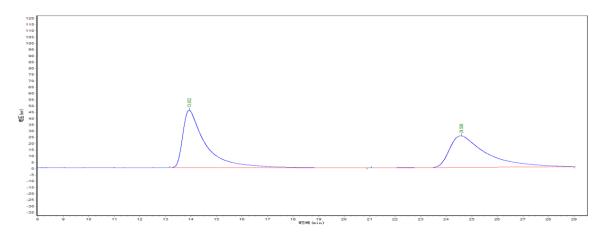
ee=90%


R.Time	Area	Area%
13.165	1614498.125	51.7971
22.665	1502466.000	48.2029

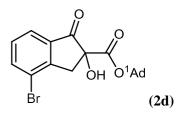


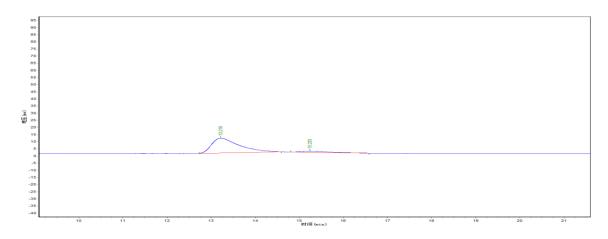

R.Time	Area	Area%
12.617	8176033.500	93.6272
21.880	556510.688	6.3728
	070/	

ee=87%

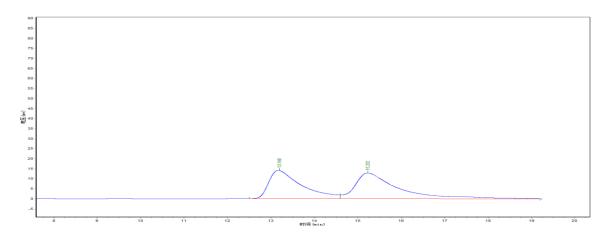


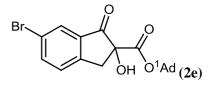
R.Time	Area	Area%
12.198	8563164.000	50.6368
22.398	8347784.000	49.3632

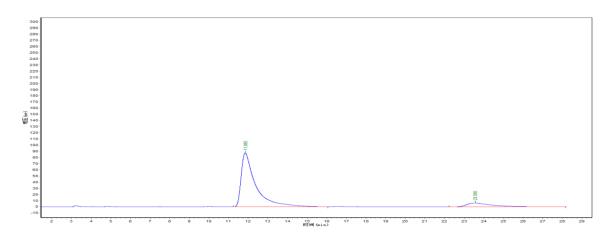




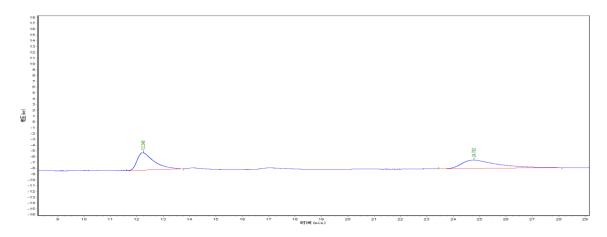
R.Time	Area	Area%
14.137	9241228.000	91.5248
24.523	855740.313	8.4752
	020/	

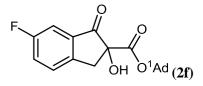

R.Time	Area	Area%
13.932	2884313.500	50.3097
24.598	2875892.250	49.6903




R.Time	Area	Area%
13.218	450118.938	94.4090
15.233	26656.711	5.5910

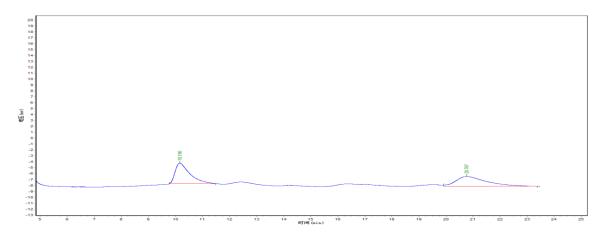
ee=89%

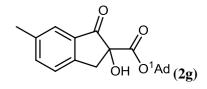

R.Time	Area	Area%
13.168	590485.500	50.2262
15.228	585167.375	49.7738

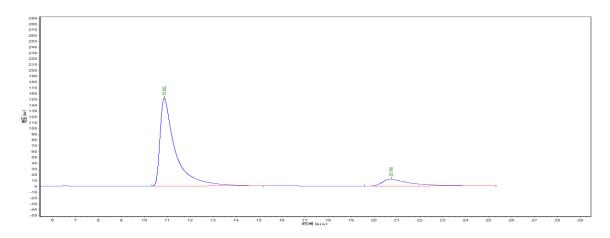



R.Time	Area	Area%
11.843	4478572.500	92.0610
23.540	386213.125	7.9390
	0.5%	

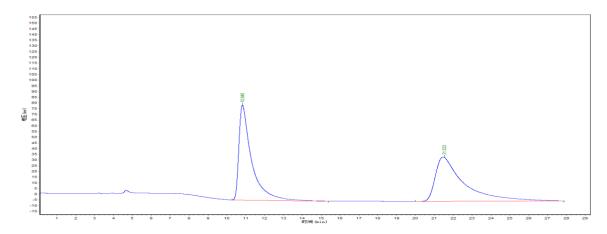
ee=85%

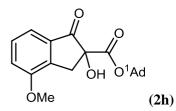

R.Time	Area	Area%
12.248	146012.484	50.4497
24.782	143409.469	49.5503

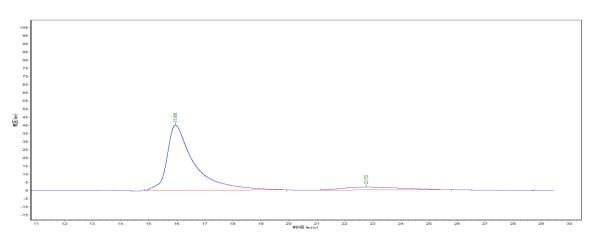


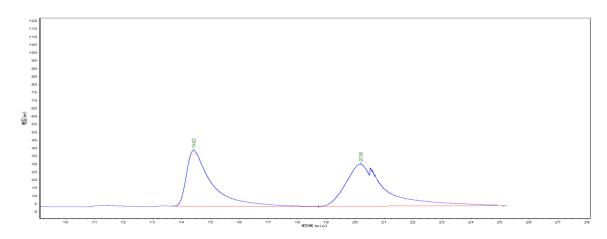

R.Time	Area	Area%
9.928	3854453.250	92.6175
19.407	307236.188	7.3825
	0.5%	

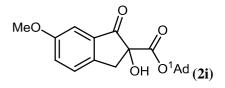
ee=85%

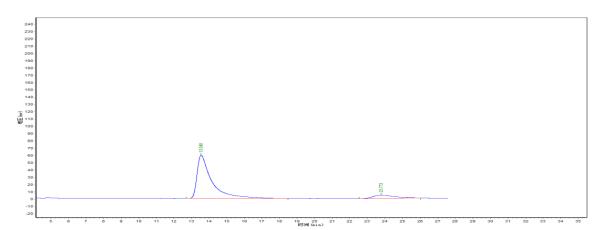

R.Time	Area	Area%
10.160	129962.289	49.1846
20.767	134271.172	50.8154



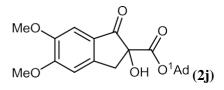

R.Time	Area	Area%
10.867	6956524.500	90.9239
20.723	694407.188	9.0761

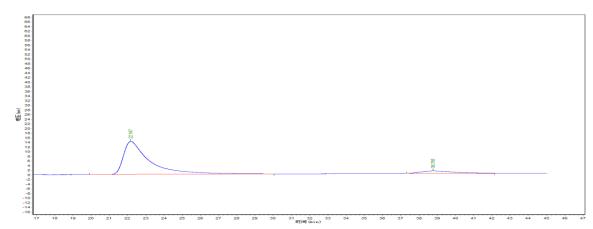

R.Time	Area	Area%
10.840	3884723.000	48.9036
21.523	4058912.250	51.0964



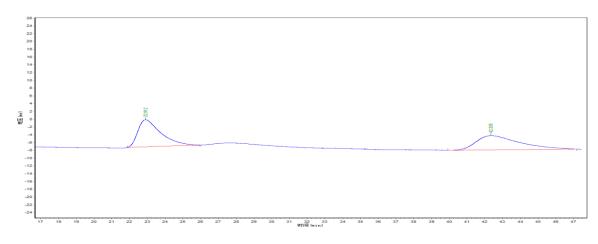

R.Time	Area	Area%
15.958	2669792.250	91.8966
22.752	235419.750	8.1034
	0.40/	


R.Time	Area	Area%
14.423	2111805.250	48.0913
20.175	2279438.250	51.9087

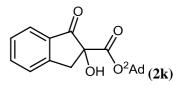


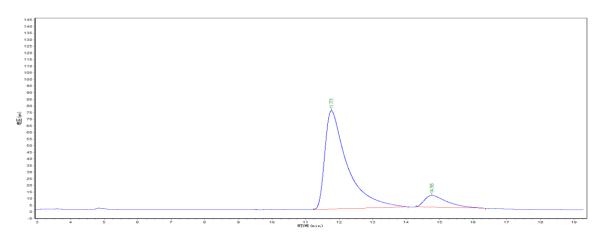

R.Time	Area	Area%
13.545	3414776.250	92.5740
23.768	273922.313	7.4260

ee= 85%

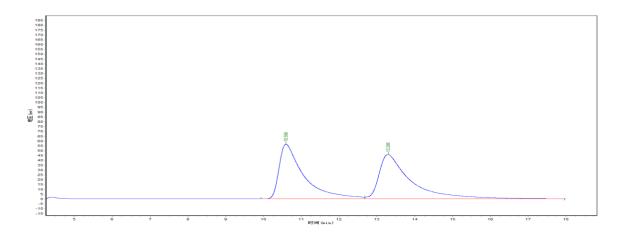


R.Time	Area	Area%
14.017	1019550.188	52.9519
25.723	905875.188	47.0481

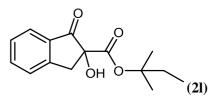


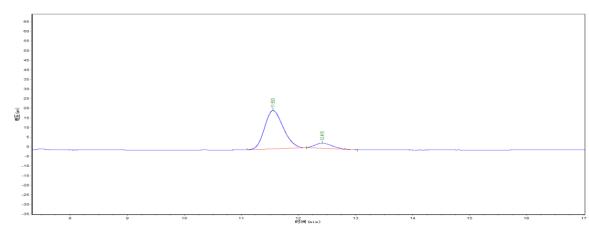


R.Time	Area	Area%
22.167	1423643.000	94.0405
38.765	90219.219	5.9595

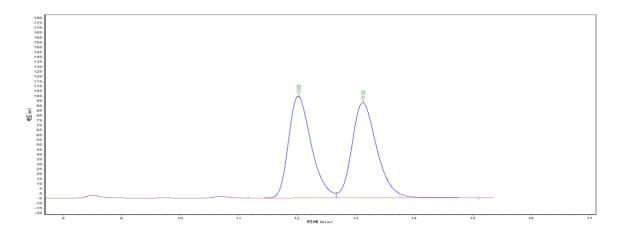


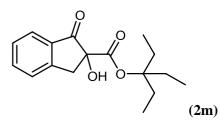
R.Time	Area	Area%
22.912	626721.875	50.4635
42.335	615209.500	49.5365

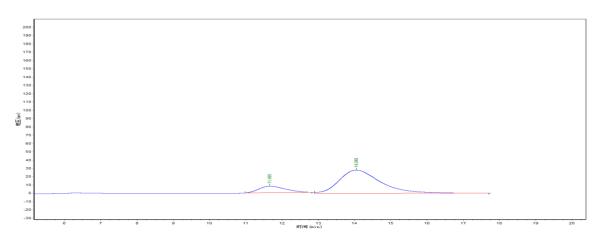




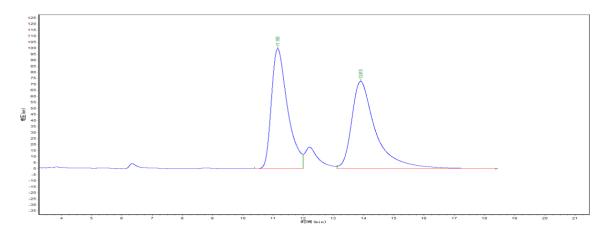
R.Time	Area	Area%
11.773	3445304.500	90.3046
14.765	369899.031	9.6954

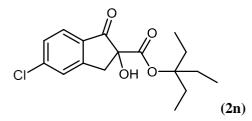

R.Time	Area	Area%
10.598	2566851.250	48.9743
13.298	2674364.500	51.0257

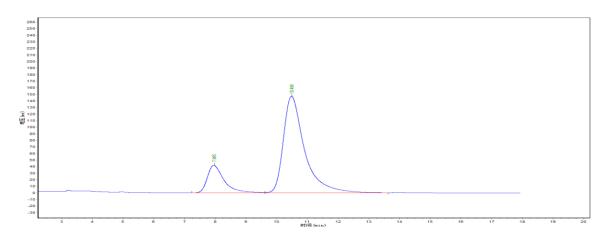


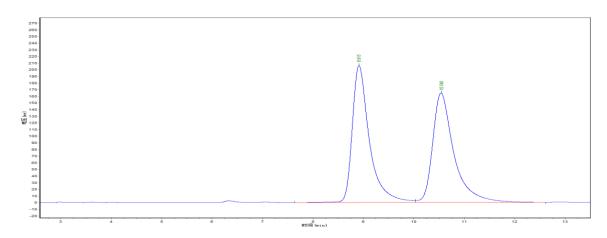

R.Time	Area	Area%
11.553	451732.000	89.0018
12.415	55821.703	10.9982

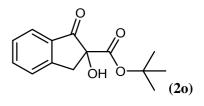
ee=78%

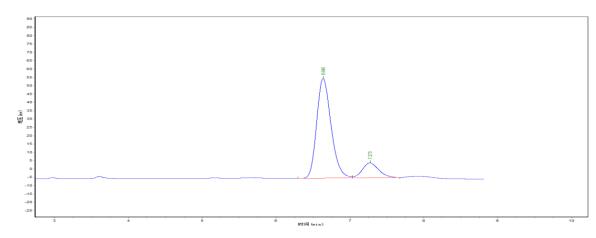

R.Time	Area	Area%
12.032	2818960.000	49.2797
13.132	2901372.000	50.7203

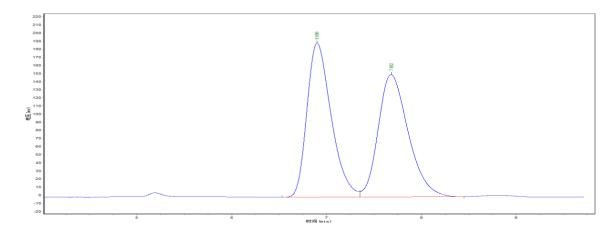


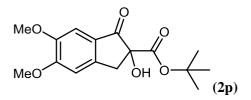

R.Time	Area	Area%
11.665	389527.781	14.9715
14.048	2212274.500	85.0285
	22-700/	

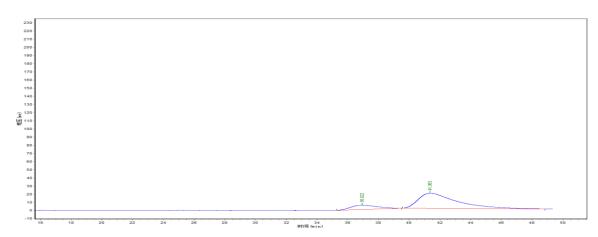

R.Time	Area	Area%
11.165	3714998.000	48.1631
13.915	3998375.000	51.8369



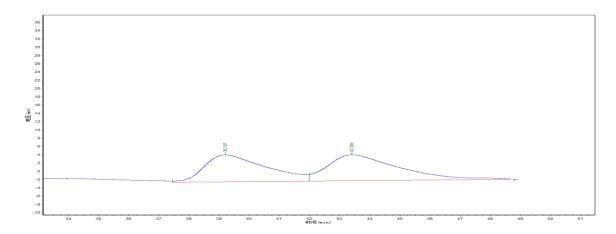

R.Time	Area	Area%
7.950	1284281.125	15.5014
10.482	7000680.500	84.4986

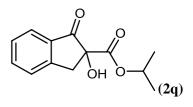

R.Time	Area	Area%
8.915	4896782.500	50.2509
10.548	4847879.500	49.7491

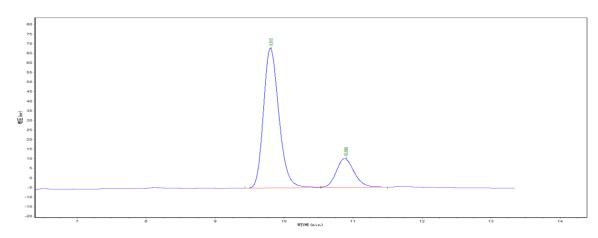



R.Time	Area	Area%
6.637	810483.563	88.0220
7.268	110289.906	11.9780

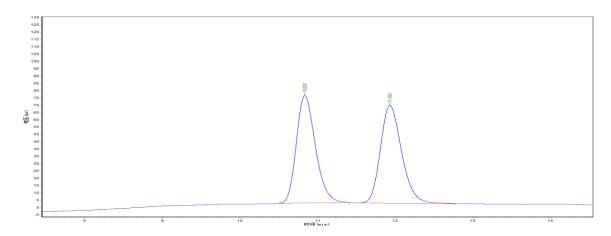
ee=76%

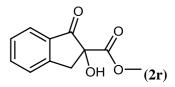

R.Time	Area	Area%
6.898	3377434.750	50.2499
7.682	3343838.000	49.7501

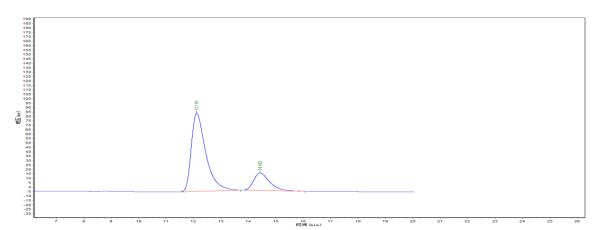



R.Time	Area	Area%
36.922	528894.875	13.9745
41.363	3255832.250	86.0256
	720/	

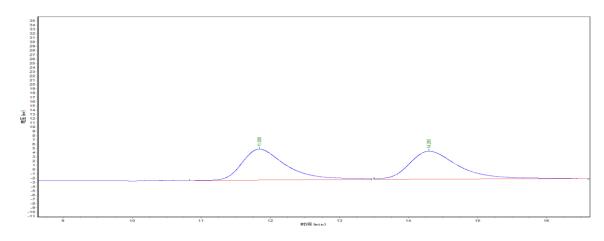
ee=72%


R.Time	Area	Area%
39.197	922402.438	47.4933
43.398	1019771.750	52.5067

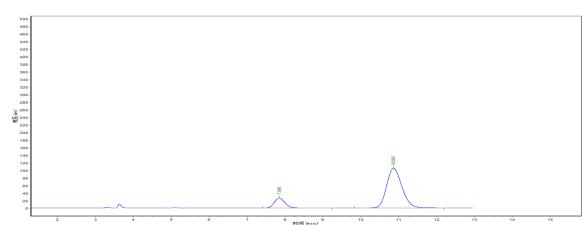



R.Time	Area	Area%
9.802	1137032.625	82.6814
10.875	238164.250	17.3186

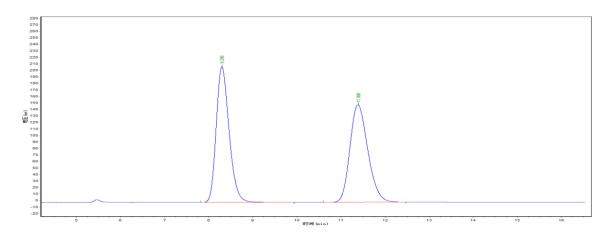
ee=65%

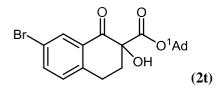

R.Time	Area	Area%
10.835	1255820.000	49.7940
11.932	1266209.875	50.2060

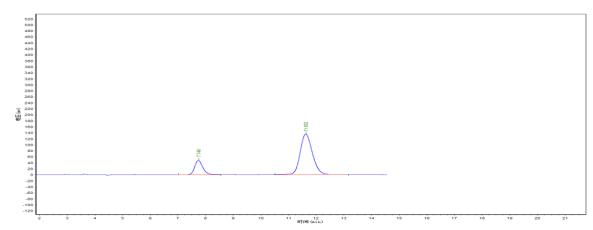


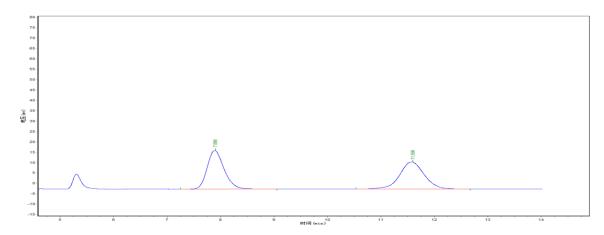

R.Time	Area	Area%
12.118	3385920.500	81.3388
14.432	776814.625	18.6612
	(20)	

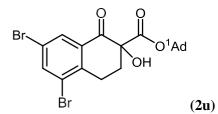
ee=63%

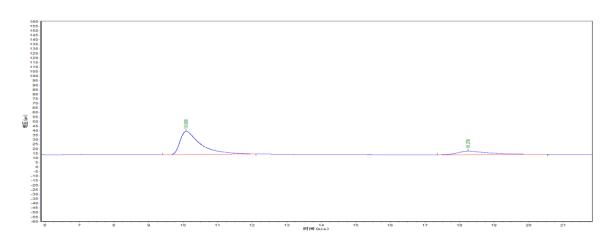

.844 49.9446
.250 50.0554

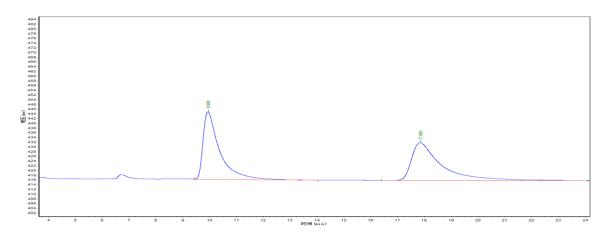


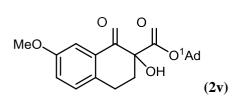

R.Time	Area	Area%
7.847	445040.781	13.1717
10.863	2933723.750	86.8283

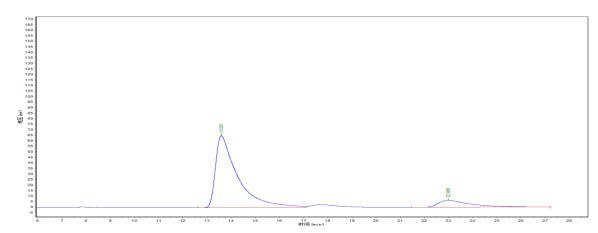

R.Time	Area	Area%
8.298	4240629.000	49.9887
11.398	4242541.000	50.0113

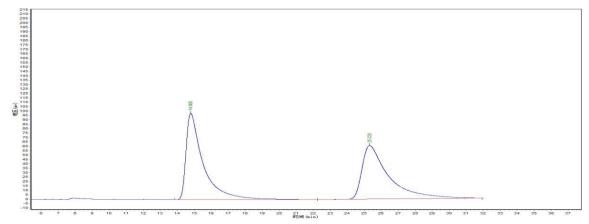


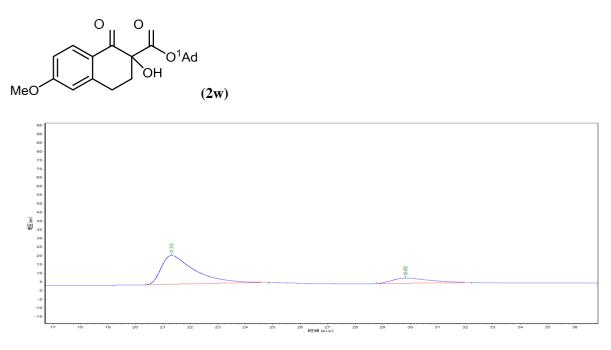

R.Time	Area	Area%
7.737	794120.063	16.1775
11.618	4114671.000	83.8225


R.Time	Area	Area%
7.898	409742.906	49.6735
11.598	415129.188	50.3265



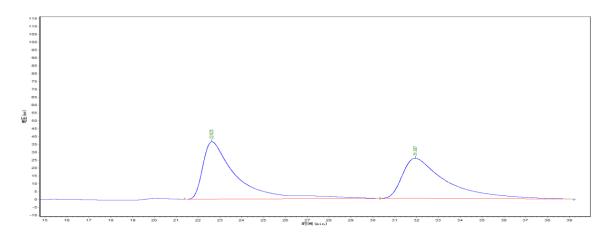

R.Time	Area	Area%
10.088	1056456.250	85.5056
18.250	179083.781	14.4944
	710/	


R.Time	Area	Area%
9.948	1246465.625	50.2949
17.865	1231848.000	49.7051

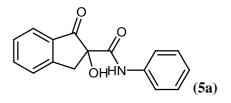


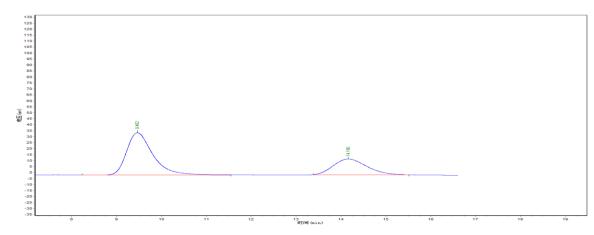
R.Time	Area	Area%
13.597	4145673.500	90.2687
22.988	446919.969	9.7313

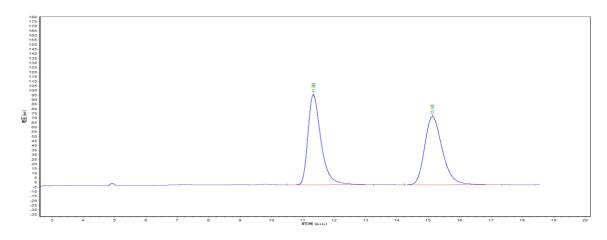
ee =80%

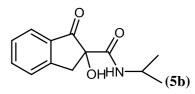


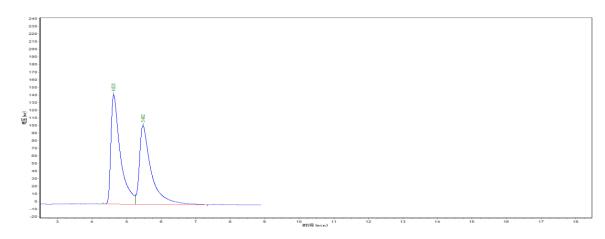
R.Time	Area	Area%
14.800	6802411.000	50.7966
25.320	6589046.000	49.2034

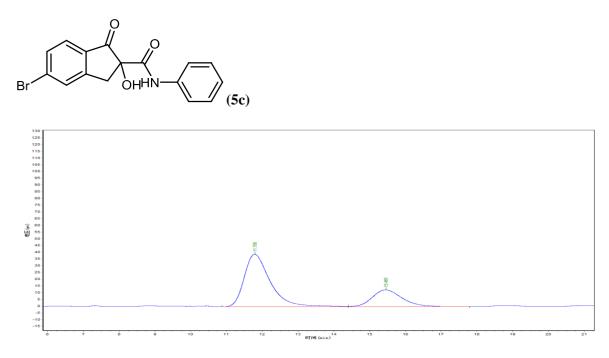


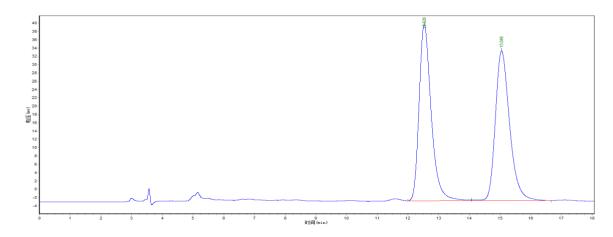

R.Time	Area	Area%
21.312	1402812.000	86.9442
29.832	210649.766	13.0558
	7.404	


R.Time	Area	Area%
22.625	3870567.750	52.0343
31.937	3567925.500	47.9657

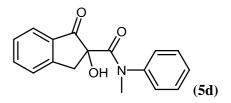


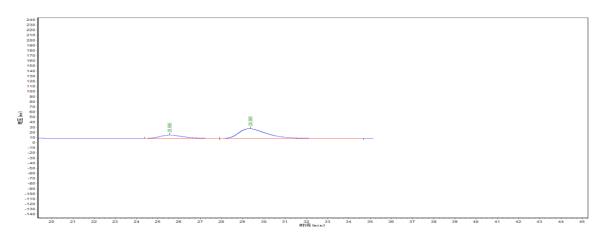

R.Time	Area	Area%
9.862	1457887.000	69.3169
14.160	645332.500	30.6831


R.Time	Area	Area%
11.140	2839808.750	49.3376
15.140	2916067.250	50.6624

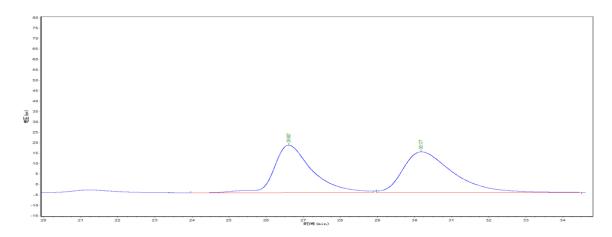

R.Time	Area	Area%
4.623	2750132.500	52.6800
5.482	2470317.250	47.3200
	50/	

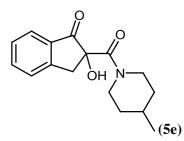
ee=5%

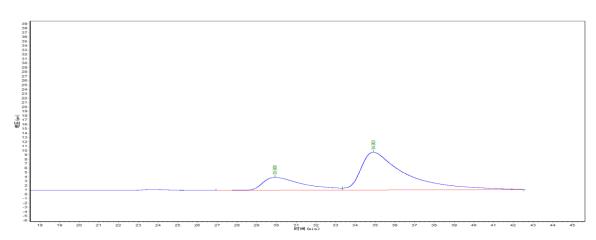



R.Time	Area	Area%
11.782	1966707.625	75.8787
15.447	632053.063	24.1213

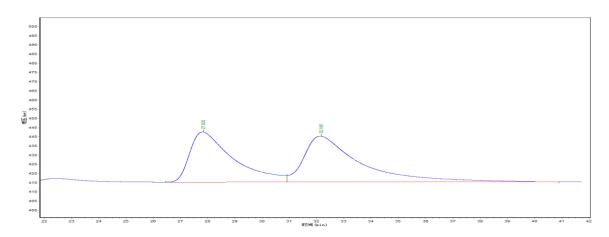
ee=52%

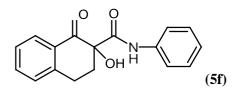

	Area%
1166018.625	50.0
1163762.500	50.0

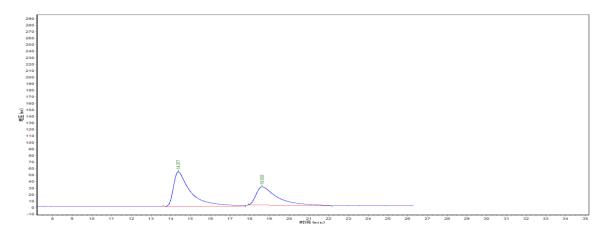



R.Time	Area	Area%
25.547	364933.125	17.1495
29.305	1763023.500	82.8505

ee=66%


R.Time	Area	Area%
26.607	1617886.750	49.0286
30.177	1652331.750	50.9714




R.Time	Area	Area%
29.908	306869.781	18.7286
34.903	1331639.250	81.2714

ee=63%

R.Time	Area	Area%
27.802	2538531.750	50.1118
32.128	2527204.250	49.8882

R.Time	Area	Area%
14.377	3188516.750	62.7687
18.633	1891268.125	37.2313
	25%	

ee=25%