Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Chiral and Non chiral Assemblies from Lipdated Serine-Based Pseudopeptidic molecules

M B Bijesh, N U Dheepthi, Appa Rao Sapala, Ashutosh Shandilya, Kedar Khare and V Haridas*

Department of chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India

Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India

Experimental section	1-2
Figure S1	3
NMR and mass spectra	4-26
Figure S2-S3	27
Figure S4-S5	28
Figure S6	29
Figure S7	30
Figure S8-S9	31
Figure S10-S11	32
Figure S12-S13	33
Figure S14- S15	34
Figure S16-S17	35
Experimental procedure	36-48
References	49

Experimental section

Synthesis and characterization

All reagents were used without further purification. All solvents for the reactions were dried prior to use. Amino acid L-serine was purchased from SRL India. Progress of reactions was monitored by thin layer chromatography (TLC). Purification of compounds was done by silica (100-200) gel column chromatography. Fisher-Scientific melting point apparatus was used for recording melting points. Optical rotations were recorded with a Rudolph Research Analytical Autopol® V Polarimeter; concentration is given in gram/10 mL. IR spectra were recorded on a Nicolet, Protégé 460 spectrometer as KBr pellets. ¹H NMR spectra were recorded on Brucker-DPX-300 spectrometer using tetramethylsilane (¹H) as an internal standard. Coupling constants are reported in Hz and the ¹H NMR data are reported as s (singlet), d (doublet), br (broad), t (triplet) and m (multiplet), dd (double doublet). High Resolution mass spectra (HRMS) were recorded in Bruker MicrO-TOF-QII model using ESI technique. Circular Dichroism (CD) spectra were recorded on JASCO Model J-815 spectropolarimeter equipped with a temperature controller. CD spectra were recorded using 1mm length cell. MD simulations were performed on 320 processors SUN Microsystems clusters at Supercomputing Facility (SCFBio) at IIT Delhi.

Microscopic studies

(a) Scanning Electron Microscopy (SEM)

A 10 μ l aliquot of the sample solution was put on a fresh piece of glass, which is attached to a stub via carbon tape. The sample was dried at room temperature and coated with ~10nm of gold. Samples were analyzed using ZEISS EVO 50 SEM.

(b) Field Emission-Scanning Electron Microscopy (FE-SEM)

A 10 μ l aliquot of the sample solution was put on a fresh piece of glass, which is attached to a stub via carbon tape. The sample was dried at room temperature and coated with ~10 nm of gold. Samples were analyzed using FEI Quanta 3D FEG High resolution scanning electron microscope (FE-SEM) combined with High-current ion column with Ga liquid-metal ion source.

(c) Atomic Force Microscopy (AFM)

Bruker Dimension Icon atomic force microscope was used for imaging. Tapping mode is used for the analysis. About 10 μ l aliquot of the sample solution was transferred onto glass cover slip and allowed to dry and imaged using AFM.

(d) High Resolution-Transmission Electron Microscopy (HR-TEM)

Samples for HR-TEM were prepared by dissolving the compound methanol. A 2µl aliquot of the sample solution was placed on a 200 mesh copper grid and samples were viewed using a TECHNAI G2 (20S-TWIN) electron microscope.

(e) Optical microscopy

Samples for optical microscope were prepared by dissolving compound in methanol. A 5 μ L aliquot of the sample solution was placed on a glass slide and allowed to dry in air at room temperature. The glass slide was then covered using a cover slip and analysed using a Nikon T*i* Eclipse inverted optical microscope.

(f) Digital Holographic Microscope

We used an image plane DHM system where a novel optimization based algorithm was used for phase recovery.¹⁻³ The integrated phase map provided by DHM system may be represented as:

$$\phi(x,y) = \frac{2\pi}{\lambda} \int dz \ [n(x,y,z) - 1],$$

where, λ is the wavelength of laser (670 nm in our system) used in DHM, n(x,y,z) stands for the local refractive index of the cell sample at the location (x,y,z) and the integral has been performed over the z or the cell depth dimension. The lateral magnification achieved in our system is 40X. The phase information is not available in a typical bright field microscope but is measurable with a DHM system.

(g) Powder X-Ray Diffraction

Powder X-ray diffractogram was recorded using Rigaku Ultima IV type II automatic high resolution modulator type X-ray diffractometer system with scintillation detector or on a Bruker D8 Advance diffractometer using radiation α Ni-filtered CuK.

Figure. S1: Reagents and conditions i) *m*-xylylene dibromide, TBABr, NaOH, CH₂Cl₂, 18h (ii) *p*-xylylene dibromide, TBABr, NaOH, CH₂Cl₂, 18h (iii) *b*-xylylene dibromide, TBABr, NaOH, CH₂Cl₂, 18h (iii) benzyl bromide, TBABr, NaOH, CH₂Cl₂, 12h (iv) benzene 1,3 dicarbonyl dichloride, DMAP, NEt₃, CH₂Cl₂, 24h (v) HCl_(g) in EtOAc or TFA/ CH₂Cl₂, 4h; benzoyl chloride, NEt₃, THF/CH₂Cl₂, 24h (vi) TFA/ CH₂Cl₂, 4h; benzene 1,3 dicarbonyl dichloride, NEt₃, CH₂Cl₂, 24h (vii) TFA/ CH₂Cl₂, 24h (vii) TFA/ CH₂Cl₂, 4h; Acetylchloride, NEt₃, CH₂Cl₂, 24h (ix) TFA/ CH₂Cl₂, 4h; diphenylacetyl chloride, NEt₃, CH₂Cl₂, 24h (x) TFA/ CH₂Cl₂, 4h; p bromo benzoyl chloride, NEt₃, CH₂Cl₂, 24h

¹H NMR Spectrum (300 MHz, CDCl₃) of **D-S1**

¹H NMR Spectrum (300 MHz, CDCl₃) of L-S2

¹³C NMR Spectrum (75 MHz, CDCl₃) of L-S2

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

нŃ

НŅ

¹H NMR spectrum (300 MHz, CDCl₃) of L-A1

¹³C NMR spectrum (75 MHz, CDCl₃) of L-A1

¹H NMR spectrum (300 MHz, CDCl₃) of **D-A1**

¹³C NMR spectrum (75 MHz, CDCl₃) of **D-A1**

¹H NMR (300 MHz, CDCl₃) spectrum of L-A2

¹³C NMR spectrum (75 MHz, CDCl₃) of L-A2

¹H NMR (300 MHz, CDCl₃) spectrum of **D-A2**

HRMS of L-A2

¹H NMR (300 MHz, CDCl₃) spectrum of **D-A2**

155.490 134.117 131.047 130.100 128.692 168.831 165.257 80.574 77.435 77.012 76.588 39.758 31.383 29.476 28.245 26.463 22.425 13.920 Bijesh 65.337 53.884 ò ΗΙ 180 160 140 120 100 80 60 40 20 ppm

¹³C NMR spectrum (75 MHz, CDCl₃) of L-S3

HRMS of L-S3

¹H NMR spectrum (300MHz, CDCl₃) of L-A3

$\frac{13}{C}$ NMR spectrum (75 MHz, DMSO- d_6) of L-A3

200 180 160 140 120 100 80 60 40 20 0 ppm

¹³C NMR spectrum (75 MHz, CDCl₃) of L-A4

(M+Na)+

2.5 5.0 4.5 4.0 3.5 3.0 2.0 1.5 1.0 0.5 0.0 ppm 8.0 7.5 7.0 6.5 6.0 5.5 JIII

¹H NMR spectrum (300 MHz, CDCl₃) of L-A6

¹³C NMR spectrum (75 MHz, CDCl₃) of L-A6

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹H NMR spectrum (300 MHz, CDCl₃) of L-A8

(M+Na)+

¹³C NMR spectrum (75 MHz, CDCl₃) of L-S4

¹H NMR spectrum (300 MHz, CDCl₃) of L-A5

¹³C NMR spectrum (75 MHz, CDCl₃) of L-A5

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Figure S2: SEM image of **L-A1** (1 mM in methanol) (a-b) Different parts of dendrites showing left handed twisted-ribbons (c) Zoomed image of **L-A1** showing the presence of intertwining at the end of ribbons. (d) Co-existence of flat ribbons and twisted-ribbons. Scale bar (a-b) 2 μ m (c-d) 1 μ m

Figure S3: SEM image of L-A1 showing the partially formed dendritic structures.

Figure S4: AFM image of L-A1 a) part of a dendrite b) zoomed image of twisted-ribbons (c) AFM cross sectional analysis of L-A1

Figure S5: SEM image of **D-A1** (1 mM in methanol) (a) zoomed out image of a part of dendritic structure (b-c) magnified image of a dendritic structure showing intertwined twisted-ribbons. d) AFM image of **D-A1** showing the right handed twisted-ribbons. Scale bar (a) 20 μ m (b) 2 μ m (c) 1 μ m

Figure S6: Optical microscopic (magnigication 100x) images of (a-b) **L-A1** (c) **D-A1** (d) Optical microscopic (40x) and (e) corresponding DHM micrographs of **L-A1** (f) zoomed view of (e)

Figure S7: SEM image of **L-A2** (1 mM, Methanol) (a) Lower magnified image showing two distinct regions; Region 1 and region 2 (b) magnified image of region 1 (c) magnified image of **L-A2** (region 2) (d) SEM image of **D-A2** (region 1) in methanol (e) magnified image of **L-A2** (region 2) (1 mM) Scale bar (a) $3 \mu m$ (b) 300 nm (c) 200 nm (d) $1 \mu m$ (e) 300 nm

Figure S8: (a) HR-TEM image and (b) AFM image of peripheral regions of dendrite from L-A1, showing the coexistence of flat-ribbons and twisted-ribbons with left-handed helical sense. The arrow indicates the region where two flat ribbons fuse together. Inset shows a pictorial representation of twisted ribbon. (c) Height image showing the twisted region (green) and flat region (red)

Figure S9: Dendritic structure obtained from an aged methanolic solution (8 months) of **L-A1**. Inset shows the magnified image of the dendritic structure, showing left-handed twisted ribbons (Scale bar $2 \mu m$).

Figure S10: (a) UV (green) and CD spectra of L-A1 (blue) and CD spectrum of D-A1 (red) (b) CD spectrum of D-A2 (c) Temperature-dependent CD spectrum of L-A1.

Figure S11: SEM images of (a) **L-A1** in THF (Scale bar 1 μ m) (b) **L-A1** in EtOAc (Scale bar 3 μ m) (c-d) **L-A1** in CHCl₃:CH₃OH at low (c) and high (d) magnification; (Scale bar 2 μ m) (e-f) **L-A1** in ethanol; (Scale bar for (e) 10 μ m and (f) 1 μ m) (g) **L-A1** in CH₃CN; (Scale bar 10 μ m) (h) **L-A1** in isopropanol; (Scale bar 2 μ m)

Figure S12: CD spectra of L-A1 in various solvents.

Figure S13: SEM image L-A1 (1 mM, Methanol) on aluminium sheet showing of dendritic structure.

Figure S14: (a) PXRD profile of **L-A1** (b) Low angle PXRD profile of **L-A1** (c) Concentrationdependent ¹H NMR spectra of **L-A1** (6.5 mM, 7.6 mM, 21.8 mM, 51 mM, 76.5 mM from bottom to top) (d) Solution IR spectrum of **L-A1** in CHCl₃

Figure S15: (a) L-A6 in CH₃OH; (Scale bar 1 μ m) (b) L-A7 in CH₃OH; (Scale bar 1 μ m) (c) L-A8 in CH₃OH; (Scale bar 1 μ m) (d) L-A9 in CH₃OH; (Scale bar 300 nm)

Figure S16: Powder xrd patterns of (a) L-A2 (c) L-A3 (c) L-A4 (d) L-A5

Figure S17: SEM image of 1mM solution of L-A5 in methanol. Scale bar 2 μ m.

Synthesis and characterization of compounds

Compound L-S1

To an ice cooled and well stirred solution of **L-P1** (1.03 g, 3.57 mmol) in CH_2Cl_2 (150 mL), added NaOH_(aq) (8 mL), and TBABr (0.20 g, 0.62 mmol). *m*-Xylylene dibromide (0.47 g, 1.78 mmol) was added and the reaction mixture was stirred at room temperature for 16 h. The reaction mixture was washed several times with water and the organic layer was dried over anhyd. Na₂SO₄ and evaporated to yield crude product. The crude mixture was chromatographed over a short column of silicagel (230-400 mesh) using EtOAc: Hexane (1:3) to yield 0.4 g of **L-S1**.

% Yield: 33 %

Appearance: White solid

Melting point: 105 °C

 $[\alpha]_D$: 2.97 (c = 0.010)

¹H NMR (300MHz, CDCl₃): δ 0.87 (br t, 6H, C<u>H</u>₃CH₂-), 1.26 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.44 (s + m, 22H, -C(C<u>H</u>₃)₃+ -NHCH₂C<u>H</u>₂-), 3.24 (m, 4H, -NHC<u>H</u>₂CH₂-), 3.56 (m, 2H, Ser C<u>H</u>₂-), 3.89 (dd, J₁ = 3.9 Hz, J₂ = 9.3 Hz, 2H, Ser C<u>H</u>₂-), 4.25 (br s, 2H, -NHC<u>H</u>C=O), 4.56 (m, 4H, ArC<u>H</u>₂-), 5.45 (s, 2H, -N<u>H</u>Boc), 6.49 (br s, 2H, -N<u>H</u>CH₂), 7.20-7.35 (m, 4H, Ar<u>H</u>).

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.5, 26.5, 28.3, 29.4, 31.4, 39.6, 54.1, 69.9, 73.1, 80.2, 126.8, 127.1, 128.6, 137.9, 155.5, 170.1

IR (KBr): 3333, 2929, 2859, 1691, 1654, 1529, 1460, 1367, 1304, 1244, 1169, 1121, 1055 cm⁻¹

HRMS calcd for $C_{36}H_{62}N_4NaO_8Na m/z = 701.4465$, obtained m/z = 701.4488.

Compound **D-S1**

To an ice cooled and well stirred solution of **D-P1** (2.63 g, 9.13 mmol) in CH_2Cl_2 (100 mL), added $NaOH_{(aq)}$ (8 mL), and TBABr (0.400 g, 1.24 mmol). *m*-Xylylene dibromide (1.20 g, 4.55 mmol) was added and the reaction mixture was stirred at room temperature for 16 h. The reaction mixture was washed several times with water and the organic layer was dried over anhyd. Na_2SO_4 and evaporated to yield 3.2 g of crude mixture. The crude mixture was chromatographed over a short column of silicagel (230-400 mesh) using EtOAc: Hexane (2:3) to yield 1.2 g of **D-S1**.

% Yield: 39 %

Appearance: White solid

Melting point: 106 °C

 $[\alpha]_D$: -4.9 (c = 0.0103)

¹H NMR (300MHz, CDCl₃): δ 0.86 (br t, 6H, C<u>H</u>₃CH₂-), 1.26 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.44 (s + m, 22 H, -C(C<u>H</u>₃)₃ + -NHCH₂C<u>H</u>₂-), 3.25 (m, 4H, -NHC<u>H</u>₂CH₂-), 3.56 (m, 2H, Ser C<u>H</u>₂-), 3.89 (dd, J₁ = 3.9 Hz, J₂ = 9.2 Hz, 2H, Ser C<u>H</u>₂-), 4.25 (br s, 2H, -NHC<u>H</u>C=O), 4.54 (m, 4H, ArC<u>H</u>₂-), 5.44 (s, 2H, -N<u>H</u>Boc), 6.48 (br s, 2H, -N<u>H</u>CH₂), 7.15-7.4 (m, 4H, Ar<u>H</u>).

IR (KBr): 3335, 3071, 2960, 2930, 2859, 1690, 1654, 1527, 1464, 1365, 1303, 1274, 1242, 1170, 1121, 1054, 1025 cm⁻¹

Compound L-S2

To an ice cooled and well stirred solution of **L-P1** (2.02 g, 7.01 mmol) in CH_2Cl_2 (100 mL), added NaOH_(aq) (6 mL), and TBABr (0.3 g, 0.93 mmol). *p*-Xylylene dibromide (0.925 g, 3.5 mmol) was added and the reaction mixture was stirred at room temperature for 18h. The reaction mixture was washed several times with water and the organic layer was dried over anhyd. Na₂SO₄ and evaporated to yield 1.7 g of the crude product. The crude mixture was chromatographed over a short column of silicagel (100-200 mesh) using EtOAc: Hexane (1:3) to yield 0.469 g of **L-S2**.

% Yield: 19.7 %

Appearance: White solid

Melting point: 101-102 °C

 $[\alpha]_D$: 2.86 (c = 0.0105)

¹**H NMR (300MHz, CDCl₃):** δ 0.88 (m, 6H, C<u>H</u>₃CH₂-), 1.29 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.46 (s + m, 22H, -C(C<u>H</u>₃)₃ + -NHCH₂C<u>H</u>₂-), 3.27 (m, 4H, -NHC<u>H</u>₂CH₂-), 3.58 (dd, J₁ = 6.6 Hz, J₂ = 9 Hz, 2H, Ser C<u>H</u>₂-), 3.92 (dd, J₁ = 3.9 Hz, J₂ = 9.3 Hz, 2H, Ser C<u>H</u>₂-), 4.25 (br s, 2H, -NHC<u>H</u>C=O), 4.55 (q, 4H, J = 7.2 Hz, ArC<u>H</u>₂-), 5.39 (br s, 2H, -N<u>H</u>Boc), 6.41 (br s, 2H, -N<u>H</u>CH₂), 7.28 (s, 4H, Ar<u>H</u>)

¹³CNMR (75MHz, CDCl₃): δ 14.0, 22.5, 26.5, 28.3, 29.5, 31.4, 39.6, 54.1, 70.0, 73.2, 80.3, 127.9, 137.3, 155.5, 170.0

IR (KBr): 3333, 2928, 2854, 1688, 1659, 1627, 1574, 1530, 1459, 1367, 1306, 1243, 1169, 1112, 1048 cm⁻¹

HRMS calcd for $C_{36}H_{62}N_4O_8Na m/z = 701.4465$, obtained m/z = 701.4440.

Compound D-S2

To an ice cooled and well stirred solution of **D-P1** (1.47 g, 5.10 mmol) in CH_2Cl_2 (75 mL), added $NaOH_{(aq)}$ (4 mL), and TBABr (0.32 g, 1 mmol). *p*-Xylylene dibromide (0.673 g, 2.55 mmol) was added and the reaction mixture was stirred at room temperature for 18h. The reaction mixture was washed several times with water and the organic layer was dried over anhyd. Na_2SO_4 and evaporated to yield 1.76 g of the crude product. The crude mixture was chromatographed over a short column of silicagel (100-200 mesh) using EtOAc: Hexane (1:3) to yield 0.374 g of **D-S2**.

% Yield: 22 %

Appearance: White solid

Melting point: 101-102 °C

 $[\alpha]_D$: - 2.08 (c = 0.0144)

¹**H** NMR (300 MHz, CDCl₃): δ 0.88 (br t, 6H, C<u>H</u>₃CH₂-), 1.27 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.45 (s + m, 22H, -NHCH₂C<u>H</u>₂- + -C(C<u>H</u>₃)₃), 3.26 (m, 4H, -NHC<u>H</u>₂CH₂-), 3.57 (dd, J₁ = 6.9 Hz, J₂ = 9 Hz, 2H, Ser C<u>H</u>₂-), 3.90 (dd, J₁ = 3.9 Hz, J₂ = 9.3 Hz, 2H, Ser C<u>H</u>₂-), 4.23 (br s, 2H, -NHC<u>H</u>C=O), 4.53 (q, 4H, J = 7.2 Hz, ArC<u>H</u>₂-), 5.37 (br s, 2H, -N<u>H</u>Boc), 6.38 (br s, 2H, -N<u>H</u>CH₂), 7.27 (s, 4H, Ar<u>H</u>)

IR (KBr): 3326, 3103, 2927, 2859, 1712, 1657, 1525, 1459, 1365, 1304, 1247, 1168, 1105, 1052 cm⁻¹

Compound L-A1

To an ice cooled solution of **L-S1** (0.118 g, 0.173 mmol) in CH_2Cl_2 (0.20 mL), added TFA (0.19 mL, 2.5 mmol) and left stirred for 4 h. The reaction mixture was then evaporated and the resulting amine was dissolved in dry CH_2Cl_2 (50 mL), added NEt₃ (0.12 mL, 0.86 mmol) and benzoyl chloride (0.49 g, 0.346 mmol), and left stirred for 12 h. The reaction mixture was diluted with CH_2Cl_2 , washed with 0.2 N H_2SO_4 , saturated NaHCO₃ and water. The organic layer was collected dried over anhyd. Na₂SO₄ and evaporated to yield 0.17 g of the crude product. It was then chromatographed over silica gel (60-120 mesh) using EtOAc: Hexane (1:1) to yield 0.05 g of the pure product.

% Yield: 42 %

Appearance: White solid

Melting point: 180 °C

 $[\alpha]_{D}$: 15.9 (c = 0.0107)

¹**H** NMR (300 MHz, CDCl₃): δ 0.84 (br t, 6H, C<u>H</u>₃CH₂-), 1.25 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.46 (m, 4H, -NHCH₂C<u>H</u>₂-), 3.28 (m, 4H, -NHC<u>H</u>₂-), 3.65 (m, 2H, SerC<u>H</u>₂-), 3.92 (dd, J₁ = 4.2 Hz, J₂ = 9 Hz, 2H, SerC<u>H</u>₂-), 4.62 (m, 4H, ArC<u>H</u>₂-), 4.81 (m, 2H, -NHC<u>H</u>C=O), 6.80 (br s, 2H, -N<u>H</u>CH₂-), 7.15-7.55 (m, 12H, Ar<u>H</u>+N<u>H</u>-), 7.78 (d, J = 7.8 Hz, 4H, Ar<u>H</u>)

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.5, 26.5, 29.4, 31.4, 39.8, 52.7, 69.1, 73.0, 126.7, 127.2, 127.3, 128.5, 128.7, 131.8, 133.6, 138.0, 167.3, 169.9

IR (KBr): 3289, 2928, 2861, 1661, 1637, 1532, 1459, 1352, 1320, 1256, 1156, 1111 cm⁻¹

HRMS calcd for $C_{40}H_{54}N_4O_6Na m/z = 709.3941$, obtained m/z = 709.3912.

Compound D-A1

To an ice cooled solution of **D-S1** (0.20 g, 0.295 mmol) in CH_2Cl_2 (0.3 mL), added TFA (0.3 mL, 4.48 mmol) and left stirred for 4 h. The raction mixture was then evaporated and the resulting amine was dissolved in dry CH_2Cl_2 (50 mL), added NEt₃ (0.21 mL, 1.47 mmol) and benzoyl chloride (0.0829 g, 0.59 mmol), and left stirred for 12 h. The reaction mixture was diluted with CH_2Cl_2 , washed with 0.2 N H_2SO_4 , saturated NaHCO₃ and water. The organic layer was collected dried over anhyd. Na₂SO₄ and evaporated to yield 0.150 g of the crude product. It was then chromatographed over silica gel (100-200 mesh) using EtOAc: Hexane (3:1) to yield 0.075 g of the pure product.

% Yield: 37 %

Appearance: White solid

Melting point: 180 °C

 $[\alpha]_D$: -19.38 (c = 0.0108)

¹**H** NMR (300 MHz, CDCl₃): δ 0.84 (br t, 6H, C<u>H</u>₃CH₂-), 1.24 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.45 (m, 4H, -NHCH₂C<u>H</u>₂-), 3.24 (m, 4H, -NHC<u>H</u>₂-), 3.67 (m, 2H, SerC<u>H</u>₂-), 3.90 (dd, J₁ = 4.5 Hz, J₂ = 9 Hz, 2H, SerC<u>H</u>₂-), 4.60 (m, 4H, ArC<u>H</u>₂-), 4.85 (br m, 2H, -NHC<u>H</u>C=O), 6.93 (br s, 2H, -N<u>H</u>CH₂-), 7.15-7.50 (m, 12H, Ar<u>H</u>+N<u>H</u>-), 7.78 (d, J = 7.2 Hz, 4H, Ar<u>H</u>)

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.5, 26.5, 29.4, 31.4, 39.8, 52.8, 69.2, 73.0, 126.8, 127.2, 127.3, 128.6, 128.7, 131.8, 133.7, 138.0, 167.3, 169.9

IR (KBr): 3288, 3084, 2928, 2862, 1661, 1637, 1531, 1489, 1459, 1379, 1352, 1320, 1256, 1156, 1111, 1085 cm⁻¹

Compound L-A2

To an ice cooled solution of **L-S2** (0.3 g, 0.442 mmol) in CH_2Cl_2 (0.5 mL), added TFA (0.5 mL, 6.52 mmol) and left stirred for 4 h. The reaction mixture then evaporated and the resulting amine was dissolved in dry CH_2Cl_2 (50 mL), added NEt₃ (0.19 mL, 1.33 mmol) and benzoyl chloride (0.124 g, 0.88 mmol), and left stirred for 12 h. The reaction mixture was diluted with CH_2Cl_2 , washed with 0.2 N H_2SO_4 , saturated NaHCO₃ and water. The organic layer was collected, dried over anhyd. Na₂SO₄ and evaporated to yield 0.187 g of the crude product. It was then chromatographed over silica gel (100-200 mesh) using EtOAc: $CHCl_3$ (1:1) to yield 0.137 g of the pure product.

% Yield: 45 %

Apperence: White Solid

Melting point: 190 °C

 $[\alpha]_D$: 15 (c = 0.006)

¹**H** NMR (300 MHz, CDCl₃): δ 0.87 (br t, 6H, C<u>H</u>₃CH₂-), 1.28 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.49 (m, 4H, -NHCH₂C<u>H</u>₂-), 3.27 (m, 4H, -NHC<u>H</u>₂-), 3.63 (m, 2H, SerC<u>H</u>₂-), 4.02 (dd, J₁ = 4.2 Hz, J₂ = 9.3 Hz, 2H, SerC<u>H</u>₂-), 4.62 (q, J = 6.3 Hz, 4H, ArC<u>H</u>₂-), 4.74 (m, 2H, -NHC<u>H</u>C=O), 6.48 (br t, 2H, -N<u>H</u>CH₂-), 7.21 (d, J = 6 Hz, 2H, -N<u>H</u>-), 7.33 (s, 4H, Ar<u>H</u>), 7.41-7.6 (m, 6H, Ar<u>H</u>), 7.82 (d, J = 7.2 Hz, 4H, Ar<u>H</u>)

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.5, 26.5, 29.4, 31.4, 39.7, 52.7, 69.5, 73.2, 127.1, 128.0, 128.6, 131.9, 133.6, 137.3, 167.2, 169.8

IR (KBr): 3296, 3091, 2927, 2859, 1661, 1636, 1532, 1463, 1359, 1320, 1252, 1153, 1108 cm⁻¹

HRMS calcd for $C_{40}H_{54}N_4O_6Na m/z = 709.3941$, obtained m/z = 709.3918.

Compound D-A2

To an ice cooled solution of **D-S2** (0.274 g, 0.404 mmol) in CH_2Cl_2 (0.5 mL), added TFA (0.5 mL, 6.52 mmol) and left stirred for 4 h. The reaction mixture was then evaporated and the resulting amine was dissolved in dry CH_2Cl_2 (50 mL), added NEt₃ (0.17 mL, 1.213 mmol) and benzoyl chloride (0.113 g, 0.81 mmol), and was left stirred for 12 h. The reaction mixture was diluted with CH_2Cl_2 , washed with 0.2 N H_2SO_4 , saturated NaHCO₃ and water. The organic layer was collected dried over Anhyd. Na₂SO₄ and evaporated to yield 0.15 g of the crude product. It was then chromatographed over silica gel (100-200 mesh) using EtOAc: CHCl₃ (1:1) to yield 0.123 g of the pure product.

% Yield: 44 %

Appearance: White solid

Melting point: 190 °C

 $[\alpha]_D$: -21.69 (c = 0.0083)

¹**H** NMR (300 MHz, CDCl₃): δ 0.85 (br t, 6H, C<u>H</u>₃CH₂-), 1.26 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.47 (m, 4H, -NHCH₂C<u>H</u>₂-), 3.27 (m, 4H, -NHC<u>H</u>₂-), 3.60 (m, 2H, SerC<u>H</u>₂-), 4.01 (dd, J₁ = 4.2 Hz, J₂ = 9.3 Hz, 2H, SerC<u>H</u>₂-), 4.61 (q, J = 6.6 Hz, 4H, ArC<u>H</u>₂-), 4.71 (m, 2H, -NHC<u>H</u>C=O), 6.55 (br s, 2H, -N<u>H</u>CH₂-), 7.18 (d, J = 6 Hz, 2H, N<u>H</u>-), 7.31 (s, 4H, Ar<u>H</u>), 7.40-7.55 (m, 6H, Ar<u>H</u>), 7.8 (d, J = 7.2 Hz, 4H, Ar<u>H</u>)

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.5, 26.5, 29.4, 31.4, 39.8, 52.7, 69.5, 73.2, 127.1, 128.1, 128.6, 131.9, 133.7, 137.3, 167.2, 169.8

IR (KBr): 3296, 3099, 2927, 2860, 1634, 1532, 1465, 1361, 1319, 1252, 1154, 1108, 1027cm⁻¹

Compound L-S3

To an ice cooled solution of **L-P1** (1.24 g, 4.296 mmol), in dry CH_2Cl_2 (50 mL), added DMAP (0.20 g, 1.64 mmol), benzene 1,3 dicarbonyldichloride (0.436 g, 2.148 mmol) and left stirred for 24 h. The reaction mixture was diluted with CH_2Cl_2 , washed with 0.2 N H_2SO_4 , saturated NaHCO₃ and water. The organic layer was collected dried over Anhyd. Na₂SO₄ and evaporated to yield 1.10 g of the crude product. It was then chromatographed over silica gel (100-200 mesh) using CHCl₃:Methanol (9:1) to yield 0.70 g of the pure product.

% Yield: 46 %

Appearance: White solid

Melting point: 140 °C

 $[\alpha]_D$: 1.65 (c = 0.0121)

¹**H** NMR (300 MHz, CDCl₃): δ 0.82 (br t, 6H, C<u>H</u>₃CH₂-), 1.23 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.43 (s, 18H, (CH₃)₃C-), 1.47 (m, 4H, -NHCH₂C<u>H</u>₂-), 3.29 (m, 4H, -NHC<u>H</u>₂-), 4.58 (m, 6H, SerC<u>H</u>₂- + -NHC<u>H</u>C=O), 5.68 (br s, 2H, -N<u>H</u>Boc), 6.73 (br s, 2H, -N<u>H</u>CH₂-), 7.48 (t, J = 7.5 Hz, 1H, Ar<u>H</u>), 8.17 (d, J = 7.8 Hz, 2H, Ar<u>H</u>), 8.58 (s, 1H, Ar<u>H</u>)

¹³C NMR (75 MHz, CDCl₃): δ 13.9, 22.4, 26.5, 28.3, 29.5, 31.4, 39.8, 53.9, 65.3, 80.6, 128.7, 130.1, 131.1, 134.1, 155.5, 165.3, 168.8

IR (KBr): 3327, 3100, 2930, 2861, 1733, 1655, 1528, 1459, 1368, 1306, 1244, 1168, 1100, 1057 cm⁻¹

HRMS calcd for $C_{36}H_{58}N_4O_{10}Na m/z = 729.4051$, obtained m/z = 729.4065

Compound L-A3

To an ice cooled solution of **L-S3** (0.20 g, 0.28 mmol), added $HCl_{(g)}$ in EtOAc (5 mL) and left stirred for 4 h. The reaction mixture was then evaporated and the resulting amine was dissolved in dry THF (50 mL), added DIEA (0.1 mL, 0.577) and benzoyl chloride (0.079g, 0.57 mmol), and was left stirred for 12 h. The precipitated reaction mixture was filtered and washed several times with acetonitrile, ethanol and THF. The resulting residue was dried to yield 0.20 g of the pure product.

% Yield: 99 %

Appearance: White solid

Melting point: 210 °C

 $[\alpha]_D$: 3.80 (c = 0.0079)

¹**H** NMR (300 MHz, CDCl₃): δ 0.83 (br t, 6H, C<u>H</u>₃CH₂-), 1.21 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.46 (m, 4H, -NHCH₂C<u>H</u>₂-), 3.28 (m, 4H, -NHC<u>H</u>₂-), 4.75 (m, 4H, SerC<u>H</u>₂-), 5.21 (m, 2H, -NHC<u>H</u>C=O), 7.06 (br s, 2H, -N<u>H</u>CH₂-), 7.35-7.58 (m, 9H, NH + Ar<u>H</u>), 7.83 (d, J = 7.2 Hz, 4H, Ar<u>H</u>), 8.14 (d, J = 7.8 Hz, 2H, -Ar<u>H</u>), 8.61 (s, 1H, Ar<u>H</u>)

¹³C NMR (75 MHz, DMSO-*d6*): δ 14.3, 22.4, 26.4, 29.4, 31.4, 52.9, 65.1, 128.0, 128.7, 129.7, 130.5, 130.6, 131.9, 134.2, 134.5, 165.1, 167.1, 168.8.

IR (KBr): 3298, 3072, 2929, 2860, 1732, 1638, 1537, 1487, 1460, 1364, 1297, 1246, 1162, 1100, 1005 cm⁻¹

HRMS calcd for $C_{36}H_{58}N_4O_{10}Na m/z = 737.3526$, obtained m/z = 737.3500

Compound L-S4

To an ice cooled solution of **L-P1** (0.2 g, 0.69 mmol) in CH_2Cl_2 (50 mL), added NaOH solution (6 mL), followed by benzyl bromide and TBABr (0.1 g, 0.31 mmol) and stirred for 12h. The reaction mixture was diluted with CH_2Cl_2 , washed with 0.2 N H_2SO_4 , saturated NaHCO₃ and water. The organic layer was

collected dried over Anhyd. Na_2SO_4 and evaporated to yield 0.5 g of the crude product. It was then chromatographed over silica gel (100-200 mesh) using EtOAc: Hexane (1:4) to yield 0.206 g of the pure product.

% Yield: 78 %

Appearance: Viscous liquid

 $[\alpha]_D$: 3.42 (c = 0.0117)

¹**H NMR (300 MHz, CDCl₃):** δ 0.86 (br t, 3H, C<u>H</u>₃CH₂-), 1.26 (br m, 6H, CH₃(C<u>H</u>₂)₃-), 1.45 (s+m, 11 H, (CH₃)₃C- + -NHCH₂C<u>H</u>₂-), 3.25 (m, 2H, -NHC<u>H</u>₂-), 3.57 (dd, J₁ = 6.6 Hz, J₂ = 9.2 Hz, 1H, SerC<u>H</u>₂-), 3.90 (dd, J₁ = 3.9 Hz, J₂ = 9.2 Hz, 1H, Ser C<u>H</u>₂-), 4.23 (br s, 1H, NHC<u>H</u>C=O), 4.54 (q, J = 10.8 Hz, 2H, ArC<u>H</u>₂-), 5.40 (br s, 1H, -N<u>H</u>Boc), 6.41 (br s, 1H, -NHCH₂-), 7.31 (m, 5H, ArH)

¹³C NMR (75 MHz, CDCl₃): δ 13.9, 22.5, 26.4, 28.3, 29.4, 31.4, 39.6, 53.9, 70.0, 73.4, 80.2, 127.7, 127.9, 128.4, 137.5, 155.5, 170.0

IR (KBr): 3341, 3009, 2927, 2858, 2361, 1711, 1662, 1497, 1460, 1367, 1245, 1169, 1111 cm⁻¹

Compound L-A4

To an ice cooled solution of **L-S4** (0.274 g, 0.724 mmol) in CH_2Cl_2 (1 mL), added TFA (1 mL, 13.04 mmol) and left stirred for 4 h. The reaction mixture was then evaporated and the resulting amine was dissolved in dry

 CH_2Cl_2 , added NEt₃ (0.17 mL, 1.213 mmol) and benzene 1,3 dicarbonyldichloride (0.055 g, 0.274 mmol), and left stirred for 12 h. The reaction mixture was diluted with CH_2Cl_2 , washed with 0.2 N H_2SO_4 , saturated NaHCO₃ and water. The organic layer was collected dried over anhyd. Na₂SO₄ and evaporated to yield 0.155 g of the crude product. It was then chromatographed over silica gel (100-200 mesh) using EtOAc: Hexane (4:2) to yield 0.084 g of the pure product.

% Yield: 45 %

Apperence: White solid

Melting point: 184 °C

 $[\alpha]_D$: 21.84 (c = 0.0087)

¹**H** NMR (300 MHz, CDCl₃): δ 0.86 (br t, 6H, C<u>H</u>₃CH₂-), 1.26 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.46 (m, 4H, -NHCH₂C<u>H</u>₂-), 3.27 (m, 4H, -NHC<u>H</u>₂-), 3.61 (m, 2H, SerC<u>H</u>₂-), 4.00 (dd, J₁ = 3.9 Hz, J₂ = 9.2 Hz, 2H, Ser CH₂-) 4.62 (q, J = 14.2 Hz, 4H, ArC<u>H</u>₂-), 4.72 (m, 2H, -NHC<u>H</u>C=O), 6.52 (br t, 2H, -N<u>H</u>CH₂-), 7.38-7.41 (m, 12H, -N<u>H</u> + Ar<u>H</u>), 7.51 (t, J = 7.8 Hz, 1H, Ar<u>H</u>), 7.95 (d, J = 7.8 Hz, 2H, -Ar<u>H</u>), 8.27 (s, 1H, Ar<u>H</u>)

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.5, 26.5, 29.4, 31.4, 39.8, 52.7, 69.5, 73.6, 125.8, 127.9, 128.1, 128.6, 129.0, 130.4, 134.2, 137.3, 166.3, 169.7

IR (KBr): 3288, 3094, 3036, 2928, 2859, 1642, 1530, 1459, 1361, 1301, 1250, 1114, 1025 cm⁻¹

HRMS calcd for $C_{40}H_{54}N_4O_6Na m/z = 709.3941$, obtained m/z = 709.3924.

Compound L-A5

To an ice cooled solution of L-S4 (0.208 g, 0.5499 mmol) in CH_2Cl_2 (1mL), added TFA (1mL, 13.04 mmol) and left stirred for 4 h. The reaction mixture was then evaporated and the resulting amine was dissolved in dry CH_2Cl_2 (50 mL), added NEt₃ (0.5 mL, 3.59 mmol) and benzoyl chloride (0.077 g, 0.5499 mmol), and reaction mixture was left stirred for 12 h. The reaction mixture was diluted with CH_2Cl_2 , washed with 0.2 N H_2SO_4 , saturated NaHCO₃ and water. The organic layer was collected dried over Anhyd. Na₂SO₄ and evaporated to

yield 0.250 g of the crude product. It was then chromatographed over silica gel (100-200 mesh) using EtOAc: Hexane (1:1) to yield 0.18 g of the pure product.

% Yield: 86 %

Apperence: White solid

Melting point: 116 °C

 $[\alpha]_D$: 15 (c = 0.010)

¹**H** NMR (300 MHz, CDCl₃): δ 0.87 (br t, 3H, C<u>H</u>₃CH₂-), 1.26 (br m, 6H, CH₃(C<u>H</u>₂)₃-), 1.46 (m, 2H, -NHCH₂C<u>H</u>₂-), 3.30 (m, 2H, -NHC<u>H</u>₂-), 3.60 (m, 1H, SerC<u>H</u>₂-), 4.03 (dd, J₁ = 3.9 Hz, J₂ = 9.3 Hz, 1H, Ser C<u>H</u>₂-), 4.62 (q, J = 16.8, 2H, ArC<u>H</u>₂-), 4.72 (m, 1H, -NHC<u>H</u>C=O), 6.51 (br s, 1H, -N<u>H</u>CH₂-), 7.17 (d, J = 5.7 Hz, 1H, ArCON<u>H</u>), 7.30-7.60 (m, 8H, Ar<u>H</u>), 7.80 (d, J = 7.5 Hz, 2H, -Ar<u>H</u>)

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.5, 26.5, 29.4, 31.4, 39.8, 52.7, 69.6, 73.5, 127.1, 127.8, 128.0, 128.5, 128.6, 131.8, 133.7, 137.5, 167.2, 169.9

IR (KBr): 3294, 3063, 3036, 2928, 2861, 1952, 1639, 1532, 1457, 1361, 1319, 1252, 1114, 1078, 1027 cm⁻¹

Compound L-A6

To an ice cooled solution of **L-S1** (0.20 g, 0.295 mmol) in CH_2Cl_2 (0.3 mL), added TFA (0.3 mL, 3.91 mmol) and left stirred for 4 h. The reaction mixture was then evaporated and the resulting amine was dissolved in dry CH_2Cl_2 (50 mL), added NEt₃ (0.12 mL, 0.884 mmol) and 1-naphthoyl chloride (0.112 g, 0.59 mmol), and was left stirred for 12 h. The reaction mixture was diluted with CH_2Cl_2 , washed with 0.2 N H_2SO_4 , saturated NaHCO₃ and water. The organic layer was collected dried over Anhyd. Na₂SO₄ and evaporated to yield 0.237 g of the crude product. It was then chromatographed over silica gel (100-200 mesh) using EtOAc: CHCl₃ (1:1) to yield 0.077 g of the pure product.

% Yield: 33 %

Apperence: White solid

Melting point: 194 °C

 $[\alpha]_D$: 2.08 (c = 0.0098)

¹**H** NMR (300 MHz, CDCl₃): δ 0.84 (br t, 6H, C<u>H</u>₃CH₂-), 1.21 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.39 (m, 4H, -NHCH₂C<u>H</u>₂-), 3.18 (m, 4H, -NHC<u>H</u>₂-), 3.71 (m, 2H, SerC<u>H</u>₂-), 3.96 (dd, J₁ = 4.8 Hz, J₂ = 9 Hz, 2H, Ser C<u>H</u>₂-), 4.61 (q, J = 7.8 Hz, 4H, ArC<u>H</u>₂-), 4.93 (m, 2H, -NHC<u>H</u>C=O), 6.91 (br m, 2H, -N<u>H</u>-), 7.13 (d, J = 7.2 Hz, 2H, -N<u>H</u>), 7.20-7.63 (m, 12H, Ar<u>H</u>), 7.85 (m, 4H, Ar<u>H</u>), 8.27 (m, 2H, Ar<u>H</u>)

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.5, 26.5, 29.3, 31.4, 39.7, 53.0, 69.4, 73.0, 124.6, 125.2, 125.5, 126.4, 126.8, 127.1, 127.2, 128.3, 128.6, 130.1, 131.0, 133.4, 133.6, 138.0, 169.4, 169.6

IR (KBr): 3292, 3050, 2926, 2857, 1938, 1636, 1531, 1462, 1369, 1315, 1253, 1157, 1111, 1023 cm⁻¹

HRMS calcd for $C_{48}H_{58}N_4O_6Na m/z = 809.4254$, obtained m/z = 809.4248.

Compound L-A7

To an ice cooled solution of L-S1 (0.20 g, 0.295 mmol), in dry in CH_2Cl_2 (0.3 mL) added TFA (0.3 mL, 3.9 mmol) and left stirred for 4 h. The reaction mixture then evaporated and the resulting amine was dissolved in dry CH_2Cl_2 (50 mL), added NEt₃ (0.12 mL, 0.884 mmol) and acetyl chloride (0.05 mL, 0.70 mmol), and left stirred for 12 h. The reaction mixture was diluted with CH_2Cl_2 , washed with 0.2 N H_2SO_4 , saturated NaHCO₃ and water. The organic layer was collected dried over Anhyd. Na₂SO₄ and evaporated to yield 0.135 g of pure product.

% Yield: 81 %

Apperence: White solid

Melting point: 164 °C

 $[\alpha]_D$: 1.00 (c = 0.010)

¹**H** NMR (300 MHz, CDCl₃): δ 0.86 (br t, 6H, C<u>H</u>₃CH₂-), 1.26 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.47 (m, 4H, -NHCH₂C<u>H</u>₂-), 2.00 (s, 6H, C<u>H</u>₃C=O), 3.24 (m, 4H, -NHC<u>H</u>₂-), 3.51 (m, 2H, SerC<u>H</u>₂-), 3.75 (dd, J₁ = 4.5 Hz, J₂ = 9 Hz, 2H, Ser C<u>H</u>₂-), 4.50-4.65 (m, 6H, ArC<u>H</u>₂-+ - NHC<u>H</u>C=O), 6.72 (br m, 4H, -N<u>H</u>-), 7.15-7.38 (m, 4H, Ar<u>H</u>)

¹³C NMR (75MHz, CDCl₃): δ 14.0, 22.5, 23.0, 26.5, 29.3, 31.4, 39.7, 52.7, 69.5, 72.9, 126.7, 127.1, 128.5, 137.9, 170.0, 170.6

IR (KBr): 3290, 3103, 2956, 2928, 2858, 2363, 1640, 1548, 1461, 1376, 1302, 1252, 1158, 1124, 1036 cm⁻¹

HRMS calcd for $C_{30}H_{50}N_4O_6Na m/z = 585.3628$, obtained m/z = 585.3623.

Compound L-A8

To an ice cooled solution of **L-S1** (0.20 g, 0.295 mmol) in CH_2Cl_2 (0.3 mL), added TFA (0.3 mL, 0.39 mmol) and left stirred for 4 h. The reaction mixture was then evaporated and the resulting amine was dissolved in dry CH_2Cl_2 (50 mL), added NEt₃ (0.12 mL, 0.884 mmol) and diphenylacetyl chloride (0.136g, 0.5896 mmol), and was left stirred for 12 h. The reaction mixture was diluted with CH_2Cl_2 , washed with 0.2 N H_2SO_4 , saturated NaHCO₃ and water. The organic layer was collected dried over anhyd. Na₂SO₄ and evaporated to yield 0.178 g of the crude product. It was then chromatographed over silica gel (100-200 mesh) using CHCl₃: CH₃OH (95:5) to yield 0.12 g of the pure product.

% Yield: 47 %

Apperence: White solid

Melting point: 194 °C

 $[\alpha]_D$: -11.34 (c = 0.0097)

¹**H** NMR (300 MHz, CDCl₃):): δ 0.86 (br t, 6H, C<u>H</u>₃CH₂-), 1.24 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.35 (m, 4H, -NHCH₂C<u>H</u>₂-), 3.15 (m, 4H, -NHC<u>H</u>₂-), 3.50 (m, 2H, SerC<u>H</u>₂-), 3.79 (dd, J₁ = 4.8 Hz, J₂ = 8.9 Hz, 2H, Ser CH₂-), 4.50 (m, 4H, ArC<u>H</u>₂-), 4.62 (m, 2H, -NHC<u>H</u>C=O), 4.92 (s, 2H, Ar₂ CH-), 6.51 (br s, 2H, -N<u>H</u>CH₂-), 6.73 (d, J = 6.6 Hz, 2H, ArCON<u>H</u>-), 7.14 (d, J = 7.5 Hz, 2H, Ar<u>H</u>), 7.27 (m, 22H, Ar<u>H</u>)

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.5, 26.5, 29.3, 31.4, 39.7, 52.7, 58.8, 69.1, 73.0, 76.6, 126.7, 127.1, 127.3, 128.6, 128.8, 137.9, 139.1, 169.5, 172.1

IR (KBr): 3295, 3063, 2927, 2858, 1641, 1541, 1496, 1455, 1373, 1216, 1159, 1114, 1032 cm⁻¹

HRMS calcd for $C_{54}H_{66}N_4O_6Na m/z = 889.4880$, obtained m/z = 889.4864.

Compound L-A9

To an ice cooled solution of **L-S1** (0.3 g, 0.442 mmol) in CH_2Cl_2 (0.3 mL), added TFA (0.3 mL, 0.39 mmol) and left stirred for 4 h. The reaction mixture was then evaporated and the resulting amine was dissolved in dry CH_2Cl_2 (50 mL), added NEt₃ (1.23 mL, 8.84 mmol) and freshly prepared p-bromobenzoyl chloride (0.192 g, 0.8844 mmol), and was left stirred for 12 h. The reaction mixture was diluted, washed with

 $0.2 \text{ N H}_2\text{SO}_4$, NaHCO₃ and water. The organic layer was collected dried over anhyd. Na₂SO₄ and evaporated to yield 0.47 g of the crude product. It was then chromatographed over silica gel (100-200 mesh) using EtOAc: Hexane (3:2) to yield 0.17 g of the pure product.

% Yield: 46 %

Appearance: White solid

Melting point: 190 °C

 $[\alpha]_D$: 17.14 (c = 0.0105)

¹**H** NMR (300 MHz, CDCl₃): δ 0.86 (br t, 6H, C<u>H</u>₃CH₂-), 1.25 (br m, 12H, CH₃(C<u>H</u>₂)₃-), 1.46 (m, 4H, -NHCH₂C<u>H</u>₂-), 3.25 (m, 4H, -NHC<u>H</u>₂-), 3.62 (m, 2H, SerC<u>H</u>₂-), 3.85 (dd, J₁ = 4.5 Hz, J₂ = 8.9 Hz, 2H, Ser C<u>H</u>₂-), 4.62 (m, 4H, ArC<u>H</u>₂-), 4.78 (m, 2H, -NHC<u>H</u>C=O), 6.76 (br m, 2H, -N<u>H</u>-), 7.15-7.7 (m, 14H, -N<u>H</u>+ Ar<u>H</u>)

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.5, 26.5, 29.4, 31.4, 39.8, 52.8, 69.1, 73.0, 126.5, 126.7, 127.3, 128.7, 128.8, 131.7, 132.5, 137.9, 166.4, 169.9

IR (KBr): 3296, 2928, 2860, 1635, 1593, 1539, 1479, 1364, 1160, 1115, 1012 cm⁻¹

HRMS calcd for $C_{40}H_{52}Br_2N_4O_6Na m/z = 865.2151$, obtained m/z = 865.2166.

MD simulations

Molecular dynamics simulations

We generated several initial conformations of L-A1, L-A2 and L-A3 using Accelerys Discovery suite software and performed MD on energetically best structures. MD simulations were performed at Supercomputing Facility (SCFBio) at Indian Institute of technology Delhi. The AMBER 12 package was used for performing Molecular Dynamics (MD) simulations. Molecules were solvated in CH₃OH in an octahedron box of solvent. The energy minimization and MD simulations of L-A1-L-A3 were carried out with the aid of the SANDER module of the AMBER 12 program.⁴ The simulation was first affected with 1000 step minimization using the steepest descent algorithm followed by a 2000 step minimization using conjugate gradient to remove bad steric contacts. Topology and parameter files for the L-A1-L-A3 were prepared using the model developed by Cornell et al.⁵ Then the system was allowed to equilibrate with methanol molecules at 300 K followed by the equilibrated at 300 K for 300 ps.

References

- 1. K. Khare, P. T. S. Ali and J. Joseph, *Opt. Express*, 2013, **21**, 2581.
- 2. P. T. Samsheerali, K. Khare and J. Joseph, Opt. Commun., 2014, 319, 85.
- 3. M. Singh, K. Khare, A. K. Jha, S. Prabhakar and R. P. Singh, *Phys. Rev. A*, 2015, **91**, DOI 10.1103/PhysRevA.91.021802.
- D. A. Case, T. A. Darden, T. E. Cheatham, III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. W. Götz, I. Kolossváry, K. F.Wong, F. Paesani, J. Vanicek, R. M. Wolf, J. Liu, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M. J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P. A. Kollman (2012), AMBER 12, University of California, San Francisco.
- W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, *J. Am. Chem. Soc.*, 1995, 117, 5179.