Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Engineering Molecular Self-Assembly of Perylene Diimide Through

pH-responsive Chiroptical Switching[†]

M. Pandeeswar and T. Govindaraju*

Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, India. Fax: +91 80 22082627; E-mail: tgraju@jncasr.ac.in

Contents

Experimental section

Materials and methods

Synthetic procedure and characterisation of **HPH**

pH responsive UV-vis absorption spectra of HPH

pH responsive fluorescence emission spectra of HPH

pH responsive CD spectra of HPH

¹H and ¹³C NMR spectra of **HPH**

HRMS spectra of **HPH**

References

Experimental section

Materials and methods

Materials. 3,4,9,10-Perylenetetracarboxylic dianhydride (PDA), L-histidine and imidazole were obtained from Sigma-Aldrich. All other reagents and solvents utilized in the experiments were of reagent and spectroscopic grades and used as received without further purification unless otherwise mentioned. Milli-Q water was used in all the experiments.

Absorption Spectroscopy. UV–vis absorption spectra of **HPH** (50 μ M solution in Milli-Q water) were recorded on a Perkin Elmer Model Lambda 900 spectrophotometer by using quartz cuvette of 10 mm path length.

Fluorescence emission Spectroscopy. Fluorescence emission spectra of HPH (50 μ M solution in Milli-Q water) were recorded on a Perkin Elmer Model LS 55 spectrophotometer by using quartz cuvette of 10 mm path length. All fluorescence spectra were recorded with excitation wavelength of $\lambda_{ex} = 480$ nm.

Circular Dichroism (CD). CD measurements of **HPH** (50 μ M solution in Milli-Q water) were carried out on a Jasco J-815 spectropolarimeter under nitrogen atmosphere by using quartz cuvette of 10 mm path length. Isodesmic model fitting was crried out by reported method.¹ The obtained temperature versus CD intensity (mdeg) at 572 nm data is normalized between 0 and 1 using the below mentioned formula.

$$\alpha(T) = \theta_T - \theta_M / \theta_{agg} - \theta_M$$

Where, $\alpha(T)$ is the fraction of aggregation, θ_{τ} is the CD effect (mdeg) at a given temperature T, θ_M is the CD effect (mdeg) at high temperature corresponding to the monomer, θ_{agg} is the CD effect (mdeg) at low temperatures corresponding to the aggregated state.

The fraction of aggregation (α (T)) versus temperature curve was fitted to the isodesmic model using the Boltzman equation.

 $y = A2 + (A1-A2)/(1 + exp((x-x_0)/dx))$

Where A1 = minimum value of the $\alpha(T)$

A2 = maximum value of the $\alpha(T)$

 x_0 = melting temperature (*T*m at α (T)= 0.5)

dx = characteristic temperature that is related to the slope of the function at the melting temperature.

The average stack length of the aggregates (DP_N) was calculated using equations

DPN=
$$1/(1-\alpha(T))^{1/2}$$

NMR Spectroscopy. ¹H and ¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer with chemical shifts reported as ppm (in DMSO- d_6 with tetramethylsilane as internal standard).

Mass Spectrometry (MS). High resolution mass spectra (HRMS) were obtained from Agilent Technologies 6538 UHD Accurate-Mass Q-TOF LC/MS spectrometer.

Field Emission Scanning Electron Microscopy (FESEM). FESEM images were acquired with a FEI Nova nanoSEM-600 equipped with a field-emission gun operating at 15 kV. The samples were prepared by drop casting of respective solutions onto a Si (111) substrate and dried in air followed by vacuum drying at room temperature.

Synthetic procedure and characterisation of HPH²

3,4,9,10-Perylenetetracarboxylic dianhydride (PDA) (500 mg, 1.2 mmol), L-histidine (435 mg, 2.5 mmol), and imidazole (2.0 g) were added into a round bottom flask fallowed by heating at 120 °C for 1 h under vigorous stirring and nitrogen atmosphere. The reaction mixture was allowed to cool to 90 °C, transferred into Milli-Q water and filtered. The filtrate was acidified with 2.0 N HCl, and the precipitate was filtered, washed with excess of methanol, Milli-Q water, acetone and dried under vacuum at 42 °C to obtain the product **HPH** in good yield (76%). ¹H NMR (*DMSO-d*₆, 400 MHz) $\delta_{\rm H}$ 14.01 (2H, br), 8.92 (2H, d), 8.64 (4H, s), 8.40 (4H, br), 7.43 (2H, s), 5.86 (2H, q), 3.71 (2H, dd), 3.46 (2H, dd); ¹³C NMR (*DMSO-d*₆, 100 MHz) $\delta_{\rm C}$ 169.6, 162.1, 134.0, 133.7, 131.2, 129.7, 128.2, 123.8, 121.7, 119.1, 116.8, 52.6, 23.8; Elemental analysis: Found C, 64.88; H, 3.35; N, 12.60; calcd C, 64.86; H, 3.33; N, 12.61 for C₃₆H₂₂N₆O₈; HR-MS: m/z found 667.1567 [M+H]⁺; calcd. 666.1499 for C₃₆H₂₂N₆O₈.

Figure S1. a) pH dependent UV-vis absorption spectra of **HPH**. b) pH responsive reversible absorption switching spectra of **HPH**.

pH responsive fluorescence emission spectra of HPH

Figure S2. a) pH dependent Fluorescence emission spectra of **HPH**. b) pH responsive reversible emission switching spectra of **HPH**.

Figure S3. a) pH dependent CD spectra of **HPH**. b) pH responsive reversible chirootical switching spectra of **HPH**.

Figure S4. The Plot of average stack length (DP_N) for HPH in water as a function of temperature.

¹³C NMR spectra (DMSO-*d6*, 100 MHz) of **HPH**

References

- (a) N. Ponnuswamy, G. D. Pantos, M. M. Smulders and J. K. Sanders, *J. Am. Chem. Soc.*, 2012, **134**, 566-573; (b) M. M. J. Smulders, M. M. L. Nieuwenhuizen, T. F. A. de Greef, P. van der Schoot, A. P. H. J. Schenning and E. W. Meijer, *Chem. Eur. J.*, 2010, **16**, 362-367.
- 2. A. K. Dwivedi, M. Pandeeswar and T. Govindaraju, ACS Appl. Mater. Interfaces, 2014, 6, 21369-21379.