Supporting Information

Synthesis, structure, magnetic and magnetocaloric properties of a series of $\left\{\mathrm{Cr}_{4}{ }^{\text {III }} \mathrm{Ln}^{\mathrm{III}}\right\}$ complexes

Olivier Blacque, ${ }^{\text {a }}$ Asma Amjad, ${ }^{\mathrm{b}}$ Andrea Caneschi, ${ }^{\mathrm{b}}$ Lorenzo Sorace, ${ }^{* \mathrm{~b}}$ Pierre-Emmanuel Car, ${ }^{*}{ }^{\mathrm{a}}$

${ }^{\text {a }}$ Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
E-mail: pierre-emmanuel.car@chem.uzh.ch
${ }^{\mathrm{b}}$ Dipartimento di Chimica Ugo Schiff \& UdR INSTM, Università degli Studi di Firenze, Vial della Lastruccia 313, 50019 Sesto Fiorentino, Italy. E-mail: lorenzo.sorace@unifi.it

Table of Contents

1. Selected bond lengths and angles $\mathbf{2}$
2. Crystal packing and crystal structure representation 6
3. Coordination geometry of $\mathrm{Dy}(\mathrm{III})$ ion 9

1. Selected bond lengths and angles

Table S1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1 a}$.

Bonds	Length ranges (\AA)	Bonds	Length ranges $(\AA \mathbf{\AA})$
$\mathbf{d}(\mathbf{C r} \cdots \mathbf{O})$	$1.923(2)-1.982(2)$	$\mathbf{d}(\mathbf{C r} \cdots \mathbf{N})$	$2.041(3)-2.079(3)$
$\mathbf{d}(\mathbf{D y} \cdots \mathbf{O})$	$2.348(2)-2.431(2)$		
Interatomic distances (\AA)		Selected angles $\left.\mathbf{(}^{\circ}\right)$	
$\mathbf{C r} \cdots \mathbf{C r}$	$5.2198(7)-7.8419(8)$	Dy1-O7-Cr2	$133.57(10)$
$\mathbf{C r} \cdots \mathbf{D y}$	$3.4399(5)-3.9809(7)$	Dy1-O17-Cr4	$132.35(11)$
Selected angles $\left.\mathbf{(}^{\circ}\right)$		Dy1-O3-Cr1	$105.681(8)$
$\mathbf{C r 2} \cdots \mathbf{D y 1} \cdots \mathbf{C r} 4$	Dy1-O18-Cr1	$102.86(8)$	
$\mathbf{C r 1} \cdots \mathbf{D y 1} \cdots \mathbf{C r 3}$	$162.923(14)$	Dy1-O8-Cr3	$103.62(9)$
	Dy1-O13-Cr3	$105.40(9)$	

Figure S1. Ellipsoidal representation of 1a, with a probability of the ellipsoids of 50%.

Table S2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1 b}$.

Bonds	Length ranges (\AA)	Bonds	Length ranges (\AA)
$\mathbf{d}(\mathbf{C r} \cdots \mathbf{O})$	$1.911(2)-1.980(3)$	$\mathbf{d}(\mathbf{C r} \cdots \mathbf{N})$	$2.038(3)-2.080(3)$
$\mathbf{d}(\mathbf{D y} \cdots \mathbf{O})$	$2.348(2)-2.431(2)$		
Interatomic distances (\AA)			Selected angles $\left.\mathbf{(}^{\circ}\right)$
$\mathbf{C r} \cdots \mathbf{C r}$	$5.1764(7)-7.8872(9)$	Dy1-O7-Cr2	$132.2(1)$
$\mathbf{C r} \cdots \mathbf{D y}$	$3.4479(6)-3.9837(8)$	Dy1-O17-Cr4	$132.5(1)$
Selected angles $\left.\mathbf{(}^{\circ}\right)$		Dy1-O3-Cr1	$106.6(1)$
$\mathbf{C r 2} \cdots \mathbf{D y 1} \cdots \mathbf{C r} 4$	$165.96(2)$	Dy1-O18-Cr1	$104.2(1)$
$\mathbf{C r 1} \cdots \mathbf{D y 1} \cdots \mathbf{C r 3}$	$117.20(2)$	Dy1-O8-Cr3	$104.5(1)$
	Dy1-O13-Cr3	$105.4(1)$	

Figure S2. Top: Ellipsoidal representation of 1b, with a probability of the ellipsoids of 50%. Bottom: Ball and stick representation with labelled atoms of the central metal core of complexes $\mathbf{1 a}$ and $\mathbf{1 b}$.

Table S3. Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ for 2.

Bonds	Length ranges (\AA)	Bonds	Length ranges (\AA)
$\mathrm{d}(\mathrm{Cr} \cdots \mathrm{O})$	1.916(5)-1.981(5)	$\mathrm{d}(\mathrm{Cr} \cdots \mathrm{N})$	2.032(7)-2.086(7)
$\mathbf{d}(\mathbf{T b} \cdots \mathbf{O}$	2.358(5)-2.426(4)		
Interatomic distances (\AA)		Selected angles (${ }^{\circ}$)	
$\mathrm{Cr} \cdots \mathrm{Cr}$	5.1824(16)-7.8924(17)	Tb1-O7-Cr2	131.88(22)
$\mathbf{C r} \cdots$ Tb	3.4553(13)-3.8949(12)	Tb1-O17-Cr4	131.61(22)
Selected angles (${ }^{\circ}$)		Tb1-O3-Cr1	106.98(20)
Cr2 \cdots Tb1 \cdots Cr4	166.187(27)	Tb1-O18-Cr1	104.02(19)
Cr1 \cdots Tb1 \cdots Cr3	106.992(29)	Tb1-O8-Cr3	104.11(19)
		Tb1-O13-Cr3	105.39(20)

Figure S3. Top: Ellipsoidal representation of 2, with a probability of the ellipsoids of 30%. Bottom: Ball and stick representation with labelled atoms of the central metal core of complexes 2.

Table S4. Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ for $\mathbf{3}$.

Bonds	Length ranges (\AA)	Bonds	Length ranges (\AA)
$\mathbf{d}(\mathbf{C r} \cdots \mathbf{O})$	$1.911(3)-1.979(3)$	$\mathbf{d}(\mathbf{C r} \cdots \mathbf{N})$	$2.044(3)-2.081(4)$
$\mathbf{d}(\mathbf{G d} \cdots \mathbf{O})$	$2.384(3)-2.449(3)$		
Interatomic distances (\AA)		Selected angles $\left(^{\circ}\right)$	
$\mathbf{C r} \cdots \mathbf{C r}$	$5.1863(9)-7.9177(10)$	Gd1-O4-Cr1	$131.63(13)$
$\mathbf{C r} \cdots \mathbf{G d}$	$3.4553(13)-3.8949(12)$	Gd1-O13-Cr4	$131.49(13)$
Selected angles $\left(^{\circ}\right)$		Gd1-O11-Cr3	$105.68(12)$
$\mathbf{C r 1} \cdots \mathbf{G d 1} \cdots \mathbf{C r} 4$	$167.254(19)$	Gd1-O12-Cr3	$103.98(11)$
$\mathbf{C r 2} \cdots \mathbf{G d 1} \cdots \mathbf{C r} 3$	$106.971(19)$	Gd1-O5-Cr2	$103.86(11)$
		Gd1-O8-Cr2	$106.87(12)$

Figure S4. Top: Ellipsoidal representation of 3, with a probability of the ellipsoids of 30%. Bottom: Ball and stick representation with labelled atoms of the central metal core of complexes 3 .

2. Crystal packing and crystal structure representation

Figure S5. Representation of the highly distorted square anti-prism geometry around Dy1. Colour code: Dy: teal, O: Red.

Figure S6. Ball and stick representations of the octahedral Cr 1 (left) and Cr 2 (right) closed environment, in complexes 1a, 1b, and 2. Colour code: Cr: yellow, O : red, N : blue, C: grey.

Figure S7. Ball and stick representations of the octahedral Cr 2 (left) and Cr 3 (right) closed environment, in complexes 1a, 1b, and 2. Colour code: Cr: yellow, O: red, N: blue, C: grey.

Figure S8. Ball and stick representation of the unit cell of complex 1a (along a axis). Nitrate anions and water molecules are omitted for clarity, as well as the H atoms. C atoms are represented as sticks for clarity. $\mathrm{Cr}^{\mathrm{III}}$: yellow, $\mathrm{Dy}^{\mathrm{III}}$: teal, O : red, N : blue, C : grey.

Figure S9. Ball and stick representation of an extended unit cell of complex $\mathbf{1 a}$ (along a axis). Nitrate anions and water molecules are omitted for clarity, as well as the H atoms. C atoms are represented as sticks for clarity. $\mathrm{Cr}^{\text {III }}$: yellow, $\mathrm{Dy}^{\text {III }}$: teal, O : red, N : blue, C : grey.

Figure S10. Ball and stick representation of the unit cell of complex 1b. Nitrate anions and water molecules are omitted for clarity, as well as the H atoms. C atoms are represented as sticks for clarity. $\mathrm{Cr}^{\text {III }}$: yellow, $\mathrm{Dy}^{\text {III }}$: teal, O: red, N : blue, C : grey.

3. Coordination geometry of Dy (III) ion

Results of Continuous Shape measurements for LnCr 4 complexes. Legend and corresponding symmetry: HPY: C7v Heptagonal pyramid; HBPY: D6h Hexagonal bipyramid; CU: Oh, Cube; SAPR: D4d Square antiprism; TDD: D2d, Triangular dodecahedron; JGBF: D2d, Johnson gyrobifastigium; JETBPY: D3h, Johnson elongated triangular bipyramid; JBTPR: C2v, Biaugmented trigonal prism J50; BTPR: C2v, Biaugmented trigonal prism; JSD: D2d, Snub diphenoid; TT: Td, Triakis tetrahedron; ETBPY: D3h, Elongated trigonal bipyramid

Table S5 (two parts). Results of Continuous Shape measurements for Dy(III) ions in complex 1a.

HPY	HBPY	CU	SAPR	TDD	JGBF
19.595	12.811	6.340	4.092	3.921	15.579

JETBPY	JBTPR	BTPR	JSD	TT	ETBPY
23.226	6.321	5.726	8.109	7.189	20.569

