Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting Information

Rhodamine B-based ordered mesoporous organosilicas for selective detection and adsorption of Al(III)

Lijie Xu,^{*a*} Shuhua Han, ^{*,*a*} Yongfeng Hu, ^{*b*} James J. Dynes, ^{*b*} Lijuan Zhang^{*c*}

^a Key Lab of Colloid and Interface Chemistry Ministry of Education, Shandong

University, Jinan 250100, P. R. China

^b Canadian Light Source 44 Innovation Boulevard Saskatoon, SK, S7N 2V3, Canada

^c Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics,

Chinese Academy of Sciences, Shanghai 201800, China

*To whom correspondence should be addressed: E-mail: shuhhan@sdu.edu.cn; Tel +86-531-88365450; Fax +86-531-88564464

Fig. S1 Size distribution histograms of RBMSiO₂-20 in ethanol.

Fig. S2 Nitrogen adsorption/desorption isotherms and corresponding pore size distribution of RBMSiO₂-0, RBMSiO₂-10, RBMSiO₂-20 and RBMSiO₂-30 after extraction.

Table S1. Surface properties of RBMSiO2 samples.

Sample	$S_{BET}({\rm m}^2/{\rm g})$	$V_t(\text{m}^3/\text{g})$	D _{BJH} (nm)
RBMSiO ₂ -0	1041.97	0.79	2.5
RBMSiO ₂ -10	131.01	0.11	2.5
RBMSiO ₂ -20	127.44	0.09	2.1
RBMSiO ₂ -30	46.00	0.05	2.1

Fig. S3 ²⁹Si MAS NMR spectrum of RBMSiO₂-30.

Fig. S4 TGA / DSC of (a) RBMSiO₂-20 and (b) RBD.

Fig. S5 (a), Fluorescence spectra of RBD (10^{-5} mol/L) upon addition of various metal ions (10^{-4} mol/L) in ethanol. Excitation at 510 nm (Excitation slit width, 3 nm; emission slit width, 2.5 nm). (b) Color changes of RBD in ethanol in the presence of various metal ions (10^{-4} mol/L) .

Fig. S6 (a) Fluorescence spectra of RBMSiO₂-20 (0.05 mg/mL) upon addition of Al^{3+} in ethanol. (b) Emission intensities at 575 nm of RBMSiO₂-20 (0.05 mg/mL) as a function of Al^{3+} concentration in 10^{-5} M range (2×10⁻⁵ to 1×10⁻⁴ mol/L). (Excitation slit width, 5.5 nm; emission slit width, 2.5 nm).

Probe	$\lambda_{em}(nm)$	LOD (µM)	Total metal	Interferents	Recycle ^b
			ions ^a		
Ref. [1]	442	0.012	14	No	No
Ref. [2]	603	0.5	16	No	Yes
Ref. [3]	400	1.06	21	$Cr^{3+}, Co^{2+}, Ga^{3+}, In^{3+}$	No
Ref. [4]	443	0.1	16	No	No
Ref. [5]	529	0.1	19	Ga ³⁺	No
Ref. [6]	398	0.393	14	No	Yes
Ref. [7]	582	0.196	21	No	No
Ref. [8]	637	0.8	14	No	No
Ref. [9]	513	2.4	14	No	No
Ref. [10]	560/410	38	12	${\rm Fe}^{3+}, {\rm Fe}^{2+}$	No
This work	575	0.13	18	No	Yes

Table S2 The comparison of this probe with some other fluorescent probes for Al^{3+} .

^a The total species of tested interference ions.

^b Recycling or reproducibility performance.

Fig. S7 ¹H-NMR spectra of RBD.

Fig. S8¹H-NMR spectra of RBSi.

References:

- [1] J. Ma, W. Shi, L. Feng, Y. Chen, K. Fan, Y. Hao, Y. Hui and Z. Xie, *RSC Adv.*, 2016, 6, 28034.
- [2] Y. Lu, S. Huang, Y. Liu, S. He, L. Zhao and X. zeng, Org. Lett., 2011, 13, 5274.
- [3] X. Sun, Y. W. Wang and Y. Peng, Org. Lett., 2012, 14, 3420.
- [4] D. Maity and T. Govindaraju, Inorg. Chem., 2010, 49, 7229.
- [5] H. Xiao, K. Chen, N. Jiang, D. Cui, G. Yin, J. Wang and R. Wang, *Analyst*, 2014, **139**, 1980.
- [6] D. Sarkar, A. Pramanik, S. Biswas, P. Karmakar and T. K. Mondal, *RSC Adv.*, 2014, 4, 30666.
- [7] X. Bao, Q. Cao, Y. Xu, Y. Gao, Y. Xu, X. Nie, B. Zhou, T. Pang and J. Zhu, *Bioorg. Med. Chem.*, 2015, 23, 694.
- [8] T. Zhou, L. Lin, M. Rong, Y. Jiang and X. Chen, Anal. Chem., 2013, 85, 9839.
- [9] W. Ding, D. Wang, X. Zheng, W. Ding, J. Zheng, W. Mu, W. Cao and L. Jin, Sens. Actuators, B, 2015, 209, 359.
- [10] Y. Kim, G. Jang and T. S. Lee, ACS Appl. Mater. Interfaces, 2015, 7, 15649.