Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Page

Supplementary Information for:

Interplay between hydrophobicity and basicity toward the catalytic activity of isoreticular organocatalyst MOFs

Sedigheh Abedi, Alireza Azhdari Tehrani, Hosein Ghasempour and Ali Morsali,*

Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran

Figure S1. FT-IR spectra of the ligands, L1 and RL1	Page 3
Figure S2. FT-IR spectra of the ligands, L2 and RL2.	Page 4
Figure S3. Mass spectra of the ligands, L2 and RL2.	Page 5
Figure S4. Mass spectra of the ligands, L1 and RL1.	Page 6
Figure S5 . (a) ¹ H-NMR spectra of L1 and L2, (b) ¹ H-NMR spectra of RL1 and RL2	Page 7
Figure S6 . Comparative FT-IR spectra of TMU-6(L1) synthesized with different method and the recycled one after the condensation reaction.	Page 8
Figure S7 . Comparative FT-IR spectra of TMU-21(L2) synthesized with different method and the recycled one after the condensation reaction	Page 9
Figure S8 . Comparative FT-IR spectra of TMU-6(RL1) and the recycled one after the condensation reaction.	Page 10
Figure S9 . Comparative FT-IR spectra of TMU-21(RL2) synthesized and the recycled one after the condensation reaction.	Page 11
Figure S10 . Thermogravimetric analysis of TMU-6(L1) (blue line) and TMU- 21(L2) (red line)	Page 12
Figure S11 . Thermogravimetric analysis of TMU-6(RL1) (blue line) and TMU- 21(RL2) (red line)	Page 13
Figure S12 . PXRD patterns of TMU-6(L1), TMU-6(RL1), TMU-21(L2) and TMU-21(RL2) revealed that these four MOFs are isoreticular framework.	Page 14
Figure S13 . PXRD patterns of simulated, as-synthesized, mechano-synthesized, activated, after reaction and water stability of TMU-6(L1).	Page 15
Figure S14 . PXRD patterns of simulated, as-synthesized, mechano-synthesized, activated, after reaction and water stability of TMU-21(L2).	Page 16

Figure S15. PXRD patterns of simulated, mechano-synthesized, after reaction and	Page 17			
water stability of TMU-6(L1) and TMU-6(RL1).	U			
Figure S16. PXRD patterns of simulated, mechano-synthesized, after reaction and	Page 19			
water stability of TMU-21(L2) and TMU-21(RL2).	U			
Table S1. Catalytic performance of TMU-6(L1), TMU-6(RL1), TMU-21(L2) and				
TMU-21(RL2), obtained by mechanochemical synthesis, within aldol condensation	Page 20			
of malonitrile with 2-cyclohexen-1-one, 24h.				
Identification of the product: 2-(cyclohex-2-enylidene)malononitrile				
Table S2 . Time in depended catalytic performance of TMU-6(L1), TMU-6(RL1),				
TMU-21(L2) and TMU-21(RL2), obtained by mechanochemical synthesis within				
aldol condensation of malonitrile with 2-cyclopenten-1-one.				
Identification of the product: 2-(cyclopent-2-enylidene)malononitrile				
Table S3 . Time in depended catalytic performance of TMU-6(L1), TMU-6(RL1),				
TMU-21(L2) and TMU-21(RL2), obtained by mechanochemical synthesis, within	Page 22			
aldol condensation of malonitrile with 4,4-dimethylcyclohexen-1-one.				
Identification of the product: 2-(cyclopent-2-enylidene)malononitrile				
Figure S17. The images of the catalysts in H_2O solvents after addition of toluene				
(up), in H ₂ O solvents after addition of dichloromethane (down) (a) TMU-21(L2),	Page 23			
(b) TMU-21(RL2), (c) TMU-6(L1) and (d) TMU-6(RL1).				
Figure S18. Yield-versus-time profile of aldol-type condensation reaction of (a) 2-	D 24			
cyclopenten-1-one and (b) 4,4-dimethyl-2-cyclohexen-1-one catalyzed by four	Page 24			
MOF structures in the reaction conditions indicated in Table 1 of the manuscript.				
Figure S19 Comparison of the catalyst reactivity of various substrates in the	Page 25			
presence of different basic MOFs.				
Figure 520. Reusability of $1 \text{ MU-0}(\text{KL1})$ (gray) and $1 \text{ MU-21}(\text{L2})$ (orange) in aldol- type condensation reaction of 2-cyclopenter-1-one and 4.4-dimethyl 2-cyclopener	Dago 25			
1-one respectively (Conditions: catalyst (10 mol%), malononitrile MeOH 60 °C	rage 23			
24h).				
,				

Figure S1. FT-IR spectra of the ligands, L1 and RL1.

Figure **S2**. FT-IR spectra of the ligands, L2 and RL2.

Figure **S3**. Mass spectra of the ligands, L2 and RL2.

Figure S4. Mass spectra of the ligands, L1 and RL1.

Figure S5 (a). 1H-NMR spectra of L1 and L2

Figure S5 (b). 1H-NMR spectra of RL1 and RL2.

Figure S6. Comparative FT-IR spectra of TMU-6(L1) synthesized with different method and the recycled one after the condensation reaction.

The FT-IR spectrum of the MOFs shows the same characteristic bands of the dicarboxylate groups of the H_2 oba ligands at ca. 1606 and 1404 cm⁻¹ for the asymmetric and symmetric vibrations, respectively, which indicate coordination of carboxylate ligands to metal ions. The absence of the expected characteristic bands at 1730–1690 cm⁻¹ for the protonated carboxylate groups indicates the complete deprotonation of H_2 oba ligand in the reaction with Zn ions. This point exists in FT-IR spectrum of all prepared MOFs.

Figure S7. Comparative FT-IR spectra of TMU-21(L2) synthesized with different method and the recycled one after the condensation reaction.

The FT-IR spectrum of the MOFs shows the same characteristic bands of the dicarboxylate groups of the H₂oba ligands at ca. 1609 and 1402 cm⁻¹ for the asymmetric and symmetric vibrations, respectively, which indicate coordination of carboxylate ligands to metal ions.

Figure S8. Comparative FT-IR spectra of TMU-6(RL1) and the recycled one after the condensation reaction.

Figure S9. Comparative FT-IR spectra of TMU-21(RL2) synthesized and the recycled one after the condensation reaction.

Figure S10. Thermogravimetric analysis of TMU-6(L1) (blue line) and TMU-21(L2) (red line)

Figure S11. Thermogravimetric analysis of TMU-6(RL1) (blue line) and TMU-21(RL2) (red line)

Figure S12. PXRD patterns of TMU-6(L1), TMU-6(RL1), TMU-21(L2) and TMU-21(RL2) revealed that these four MOFs are isoreticular framework.

Figure S13. PXRD patterns of simulated, as-synthesized, mechano-synthesized, activated, after reaction and water stability of TMU-6(L1). The recycling PXRD of the MOFs were recorded after 7th cycle of reusability test.

Figure S14. PXRD patterns of simulated, as-synthesized, mechano-synthesized, activated, after reaction and water stability of TMU-21(L2). The recycling PXRD of the MOFs were recorded after 7th cycle of reusability test.

Figure S15. PXRD patterns of simulated, mechano-synthesized, after reaction and water stability of TMU-6(L1) and TMU-6(RL1). The recycling PXRD of the MOFs were recorded after 7th cycle of reusability test.

Figure S16. PXRD patterns of simulated, mechano-synthesized, after reaction and water stability of TMU-21(L2) and TMU-21(RL2). The recycling PXRD of the MOFs were recorded after 7th cycle of reusability test.

Table S1. Catalytic performance of TMU-6(L1), TMU-6(RL1), TMU-21(L2) and TMU-21(RL2), obtained by mechanochemical synthesis, within aldol condensation of malonitrile with 2-cyclohexen-1-one, 24h.

Identification of the product: 2-(cyclohex-2-enylidene)malononitrile

FT-IR data (KBr pellet, v/cm-1): 436(m), 570(m), 806(w), 1024(m), 1095(m), 1260(w), 1443(w), 1637(s), 2203(s), 2925(s), 3432(m)

¹H NMR (500 MHz, CDCl₃): 1.86 (m, 2H), 2.44 (m, 2H), 2.55 (t, 2H), 6.13 (m, 1H), 6.70 (d, 1H)

$ \begin{array}{c} $						
Time	TMU-6(RL1)	TMU-6(L1)	TMU-21(L2)	TMU-21(RL2)		
12 h	54	47.8	40.2	25		
24 h	93.7	89	76.3	60		
36 h	97.3	99.2	93	80		
60 h			99.5	95.4		

Table S2. Time in depended catalytic performance of TMU-6(L1), TMU-6(RL1), TMU-21(L2) and TMU-21(RL2), obtained by mechanochemical synthesis within aldol condensation of malonitrile with 2-cyclopenten-1-one.

Identification of the product: 2-(cyclopent-2-enylidene)malononitrile FT-IR data (KBr pellet, v/cm⁻¹): 566(m), 1097(m), 1304(m), 1439(m), 1577(s), 1642(vs), 2204(vs), 2948(m), 3234(m), 3350(m)

¹H NMR (500 MHz, CDCl₃): 1.61 (m, 2H), 2.06 (t, 2H), 5.09 (m, 1H), 5.82 (d, 1H)

$ \begin{array}{c} $						
Time	TMU-21(L2)	TMU-6(L1)	TMU-6(RL1)	TMU-21(RL2)		
12 h	53.5	42.8	38.5	27.6		
24 h	72.7	53.4	48	31.3		
36 h	87	72.4	69	63		
60 h	91.4	80.8	77.8	70.3		

Table S3. Time in depended catalytic performance of TMU-6(L1), TMU-6(RL1), TMU-21(L2) and TMU-21(RL2), obtained by mechanochemical synthesis, within aldol condensation of malonitrile with 4,4-dimethylcyclohexen-1-one.

Identification of the product: 2-(4,4-dimethylcyclohex-2-enylidene)malononitrile

FT-IR data (KBr pellet, v/cm⁻¹): 682(m), 1022(m), 1219(m), 1456(m), 1553(m), 1605(s), 2192(s), 2959(m), 3209(m), 3347(m)

¹H NMR (500 MHz, CDCl₃): 1.14 (s, 6H), 1.71 (t, 2H), 2.83 (t, 2H), 6.45 (d, 1H), 6.62 (d, 1H)

Figure S17. The images of the catalysts in H_2O solvents after addition of toluene (up), in H_2O solvents after addition of dichloromethane (down) (a) TMU-21(L2), (b) TMU-21(RL2), (c) TMU-6(L1) and (d) TMU-6(RL1).

Figure S18. Yield-versus-time profile of aldol-type condensation reaction of (a) 2-cyclopenten-1-one and (b) 4,4-dimethyl-2-cyclohexen-1-one catalyzed by four MOF structures in the reaction conditions indicated in Table 1 of the manuscript.

Figure S19 Comparison of the catalyst reactivity of various substrates in the presence of different basic MOFs.

Figure S20. Reusability of TMU-6(RL1) (gray) and TMU-21(L2) (orange) in aldol-type condensation reaction of 2-cyclopenten-1-one and 4,4-dimethyl-2-cyclohexen-1-one (0.6 mmol), respectively. (Conditions: catalyst (5 mol%), malononitrile (0.9 mmol), MeOH, 60 °C, 24h)