Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

ESI - New Journal of Chemistry

S1

Synthesis and Solid-State Structures of Gold(I) Complexes of Diphosphines

Sebastian Molitor, Christoph Mahler and Viktoria H. Gessner*

Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Index

1.	NMR spectra	S 1
2.	Crystal Structure Determination	S15
2.1	Crystal Structure Determination of 1d	S 18
2.2	Crystal Structure Determination of 1f	S19
2.3	Crystal Structure Determination of 2a	S21
2.4	Crystal Structure Determination of 2b	S24
2.5	Crystal Structure Determination of 2c	S26
2.6	Crystal Structure Determination of 2d	S28
2.7	Crystal Structure Determination of 2e	S 30
2.8	Crystal Structure Determination of 2h	S35
3.	References	S37

Figure S1a. ³¹P{¹H} NMR and ¹H NMR spectra of **2a**.

Figure S1b. ${}^{13}C{}^{1}H$ NMR and ${}^{13}C{}^{1}H$ DEPT135 NMR spectra of **2a**.

Figure S2a. ³¹P{¹H} NMR and ¹H NMR spectra of **2b**.

Figure S2b. ${}^{13}C{}^{1}H$ NMR and ${}^{13}C{}^{1}H$ DEPT135 NMR spectra of **2b**.

Figure S3a. ³¹P{¹H} NMR and ¹H NMR spectra of **2c**.

Figure S3b. ${}^{13}C{}^{1}H$ NMR and ${}^{13}C{}^{1}H$ DEPT135 NMR spectra of **2c**.

Figure S4a. ³¹P{¹H} NMR and ¹H NMR spectra of **2d**.

Figure S4b. ${}^{13}C{}^{1}H$ NMR and ${}^{13}C{}^{1}H$ DEPT135 NMR spectra of 2d.

Figure S5a. ³¹P{¹H} NMR and ¹H NMR spectra of **2e**.

Figure S5b. ${}^{13}C{}^{1}H$ NMR and ${}^{13}C{}^{1}H$ DEPT135 NMR spectra of **2e**.

Figure S6a. ³¹P{¹H} NMR and ¹H NMR spectra of **2h**.

Figure S6b. ${}^{13}C{}^{1}H$ NMR and ${}^{13}C{}^{1}H$ DEPT135 NMR spectra of **2h**.

Figure S6c. ${}^{13}C{}^{19}F{}$ NMR and ${}^{19}F{}^{1}H{}$ NMR spectra of **2h**.

2. Crystal Structure Determination

Data collection of all compounds was conducted with a Bruker APEX2-CCD (D8 three-circle goniometer). The structures were solved using direct methods, refined with the Shelx software package^[1] and expanded using Fourier techniques. The crystals of all compounds were mounted in an inert oil (perfluoropolyalkylether). Crystal structure determinations were effected at 100 K. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1463741-1463748. Copies of the data can be obtained free of charge on application to Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; [fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk].

Compound	1d	1f
CCDC No.	CCDC-1463741	CCDC-1463742
Formula	$C_{28}H_{28}O_4P_2$	$C_{28}H_{28}P_2$
Formula weight [g·mol [−]	490.44	426.44
Temperature [K]	100(2)	100(2)
Wave length [Å]	0.71073	0.71073
Crystal system	monoclinic	monoclinic
Space group	<i>C</i> 2/c (15)	$P2_1/c$ (14)
a [Å]	14.3337(13)	7.5386(3)
b [Å]	8.0972(7)	16.2636(7)
c [Å]	21.2171(19)	18.9268(8)
β [°]	91.838(3)	100.154(1)
Volume [Å ³]	2461.2(4)	2284.17(17)
Z	4	4
Calc. density [Mg·m ⁻³]	1.324	1.240
μ (Mo _{Ka}) [mm ⁻¹]	0.210	0.203
F(000)	1032	904
Crystal dimensions [mm]	0.26 x 0.16 x 0.04	0.26 x 0.21 x 0.13
Theta range [°]	2.89 to 26.42	1.66 to 26.44
Index ranges	$-17 \leq k \leq 17$	$-9 \le h \le 9$
	$-10 \leq k \leq 10$	$-20 \le k \le 20$
	$-26 \leq k \leq 26$	$-23 \le l \le 23$
Reflections collected	15540	30184
Independent reflections	2523 [$R_{\rm int} = 0.0578$]	4701 [$R_{\rm int} = 0.0403$]
Data/Restraints/Paramet er	2523 / 0 / 146	4701 / 0 / 275
Goodness-of-fit on F ²	1.035	1.010
Final R indices	R1 = 0.0431	R1 = 0.0326
[1>2sigma(1)]	wR2 = 0.01095 R1 = 0.0545	wR2 = 0.0789
R indices (all data)	$K_1 = 0.0343$ WR2 = 0.1157	$K_1 = 0.0431$ wR2 = 0.0871
Largest diff. peak and hole	0.476 and -0.335	0.307 and -0.237

Table S1. Data collection and structure refinement details for compounds 2a-2c.

Compound	2a	2b	2c
CCDC No.	CCDC-1463743	CCDC-1463744	CCDC-1463745
Formula	$C_{28}H_{28}Au_2Cl_2P_2$	$C_{28}H_{28}Au_2Cl_2O_4P_2$	$C_{34}H_{44}Au_{2}Cl_{6}N_{4}P_{2} \\$
Formula weight [g·mol [−]	891.28	955.28	1177.31
Temperature [K]	100(2)	100(2)	100(2)
Wave length [Å]	0.71073	0.71073	0.71073
Crystal system	orthorhombic	monoclinic	triclinic
Space group	$Pca2_1(29)$	<i>C</i> 2/c (15)	<i>P</i> -1 (2)
a [Å]	11.5429(8)	15.401(2)	10.3579(9)
b [Å]	16.0408(11)	12.9857(19)	10.4563(7)
c [Å]	14.5815(11)	14.468(3)	11.1637(7)
α [°]			62.997(2)
β [°]		100.885(6)	68.316(2)
γ [°]			78.142(2)
Volume [Å ³]	2699.8(3)	2841.4(8)	1000.00(11)
Z	4	4	1
Calc. density [Mg⋅m ⁻³]	2.193	2.233	1.955
μ (Mo _{Ka}) [mm ⁻¹]	11.188	10.649	7.838
F(000)	1672	1800	566
Crystal dimensions [mm]	0.34 x 0.22 x 0.17	0.16 x 0.12 x 0.08	0.19 x 0.15 x 0.03
Theta range [°]	1.27 to 24.99	3.32 to 25.00	3.65 to 25.00
Index ranges	$-13 \leq k \leq 13$	$-18 \le h \le 16$	$-12 \leq h \leq 12$
	$-19 \leq k \leq 19$	$-15 \leq k \leq 15$	$-11 \le k \le 12$
	$-17 \leq k \leq 17$	$-17 \le l \le 17$	$-13 \le l \le 11$
Reflections collected	31069	11261	8676
Independent reflections	4745 [$R_{\rm int} = 0.0553$]	2502 [$R_{\rm int} = 0.0403$]	3508 [$R_{\rm int} = 0.0352$]
Data/Restraints/Paramet er	4745 / 1 / 251	2502 / 0 / 174	3508 / 0 / 221
Goodness-of-fit on F ²	1.066	1.031	1.033
Final R indices	R1 = 0.0234	R1 = 0.0209	R1 = 0.0273
[I>2sigma(I)]	wR2 = 0.0459 R1 = 0.0222	wR2 = 0.0386 R1 = 0.0285	wR2 = 0.0518 R1 = 0.0251
<i>R</i> indices (all data)	R1 = 0.0522 w $R2 = 0.0490$	R1 = 0.0285 WR2 = 0.0412	R1 = 0.0551 WR2 = 0.0548
Largest diff. peak and hole	1.151 and -0.647	0.612 and -0.733	0.969 and -0.561

 Table S2. Data collection and structure refinement details for compounds 2a-2c.

Compound	2d	2e	2h
CCDC No.	CCDC-1463746	CCDC-1463747	CCDC-1463748
Formula	$C_{32}H_{36}Au_{2}Cl_{2}O_{5}P_{2} \\$	$C_{32}H_{40}Au_{2}Cl_{2}N_{4}P_{2} \\$	$C_{40}H_{28}Au_2F_{10}O_4P_2\\$
Formula weight [g⋅mol ⁻¹]	1027.38	1007.45	1218.50
Temperature [K]	100(2)	100(2)	100(2)
Wave length [Å]	0.71073	0.71073	0.71073
Crystal system	triclinic	triclinic	triclinic
Space group	<i>P</i> -1 (2)	<i>P</i> -1 (2)	<i>P</i> -1 (2)
a [Å]	10.9838(5)	11.4972(5)	7.3242(5)
b [Å]	12.5329(6)	15.3421(7)	11.2949(8)
c [Å]	13.3045(6)	21.1914(10)	13.0454(9)
α [°]	77.741(2)	94.108(2)	110.027(2)
β [°]	80.078(2)	90.027(2)	105.628(2)
γ [°]	75.775(2)	92.970(2)	93.035(2)
Volume [Å ³]	1720.84(14)	3723.3(3)	963.80(12)
Z	2	4	1
Calc. density [Mg⋅m ⁻³]	1.983	1.797	2.099
μ (Mo _{Kα}) [mm ⁻¹]	8.801	8.127	7.776
F(000)	980	1928	578
Crystal dimensions [mm]	0.23 x 0.09 x 0.06	0.26 x 0.14 x 0.03	0.15 x 0.11 x 0.02
Theta range [°]	2.44 to 24.99	1.33to 25.00	2.91 to 24.99
Index ranges	$-13 \leq k \leq 13$	$-13 \le h \le 13$	$-8 \leq h \leq 8$
	$-14 \leq k \leq 14$	$-18 \leq k \leq 18$	$-13 \leq k \leq 13$
	$-15 \leq k \leq 15$	$-25 \leq l \leq 25$	$-15 \leq l \leq 15$
Reflections collected	21898	41029	11518
Independent reflections	$6032 [R_{int} = 0.0481]$	13083 [$R_{\rm int} = 0.0936$]	$3400 [R_{int} = 0.0304]$
Data/Restraints/Paramet er	6032 / 0 / 368	13083 / 0 / 767	3400 / 0 / 246
Goodness-of-fit on F ²	1.025	1.055	1.087
Final R indices	R1 = 0.0364	R1 = 0.0488	R1 = 0.0226
[I>2sigma(I)]	wR2 = 0.0832	wR2 = 0.0790 P1 = 0.0018	wR2 = 0.0522 P1 = 0.0247
R indices (all data)	wR2 = 0.0909	wR2 = 0.0918	wR2 = 0.0530
Largest diff. peak and hole	2.286 and -1.777	1.09 and -1.208	2.087 and -0.863

Table S3. Data collection and structure refinement details for compounds 2d, 2e and 2h.

2.1 Crystal Structure Determination of 1d

Figure S7. ORTEP Plot of compound 1d. Ellipsoids are drawn at the 50% probability level.

		e	-5	
	Х	у	Z	U(eq)
P(1)	4533(1)	602(1)	2907(1)	11(1)
C(1)	5327(1)	1308(2)	3551(1)	13(1)
O(1)	4005(1)	1098(2)	4170(1)	19(1)
O(2)	3414(1)	-1657(2)	2170(1)	17(1)
C(2)	6256(1)	1777(2)	3492(1)	17(1)
C(3)	6770(2)	2491(3)	3992(1)	22(1)
C(4)	6348(2)	2746(3)	4562(1)	23(1)
C(5)	5426(2)	2285(3)	4641(1)	20(1)
C(6)	4920(1)	1576(2)	4140(1)	15(1)
C(7)	3513(2)	1521(3)	4720(1)	24(1)
C(8)	4369(1)	-1585(2)	3085(1)	13(1)
C(9)	4771(1)	-2376(3)	3609(1)	15(1)
C(10)	4615(2)	-4039(3)	3724(1)	19(1)
C(11)	4042(2)	-4934(3)	3313(1)	21(1)
C(12)	3628(1)	-4184(3)	2786(1)	19(1)
C(13)	3787(1)	-2521(3)	2675(1)	15(1)
C(14)	2938(2)	-2584(3)	1684(1)	21(1)

Table S4. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for compound **1d**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S5. Anisotropic displacement parameters (Å²x 10³) for compound **1d**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	13(1)	11(1)	9(1)	-1(1)	1(1)	0(1)
C(1)	17(1)	10(1)	11(1)	0(1)	-2(1)	2(1)
O(1)	19(1)	25(1)	12(1)	-2(1)	5(1)	2(1)
O(2)	18(1)	17(1)	15(1)	0(1)	-5(1)	-1(1)
C(2)	19(1)	16(1)	15(1)	-2(1)	0(1)	0(1)
C(3)	19(1)	24(1)	23(1)	-2(1)	-4(1)	-3(1)
C(4)	28(1)	23(1)	17(1)	-4(1)	-9(1)	1(1)
C(5)	29(1)	19(1)	12(1)	0(1)	-2(1)	5(1)
C(6)	20(1)	12(1)	12(1)	1(1)	-1(1)	2(1)
C(7)	26(1)	31(1)	17(1)	-1(1)	9(1)	7(1)
C(8)	11(1)	14(1)	13(1)	0(1)	5(1)	1(1)
C(9)	17(1)	16(1)	12(1)	-2(1)	2(1)	-1(1)
C(10)	23(1)	17(1)	18(1)	5(1)	0(1)	3(1)
C(11)	21(1)	12(1)	29(1)	2(1)	4(1)	0(1)
C(12)	16(1)	16(1)	24(1)	-3(1)	2(1)	-4(1)
C(13)	11(1)	16(1)	17(1)	1(1)	3(1)	1(1)
C(14)	19(1)	25(1)	17(1)	-4(1)	-5(1)	-4(1)

2.2 Crystal Structure Determination of 1f

Figure S8. ORTEP Plot of compound 1f. Ellipsoids are drawn at the 50% probability level.

C(14)

C(15)

C(16)

C(17)

C(18)

C(19)

C(20)

C(21)

C(22)

C(23)

C(24)

C(25)

C(26)

C(27)

C(28)

	Х	У	Z	U(eq)
P(1)	733(1)	7363(1)	3163(1)	14(1)
C(1)	-1570(2)	7012(1)	2796(1)	15(1)
P(2)	886(1)	7142(1)	4335(1)	14(1)
C(2)	-2653(2)	6582(1)	3196(1)	20(1)
C(3)	-4393(2)	6342(1)	2893(1)	25(1)
C(4)	-5076(2)	6548(1)	2191(1)	27(1)
C(5)	-4002(2)	6960(1)	1782(1)	23(1)
C(6)	-2235(2)	7179(1)	2068(1)	18(1)
C(7)	-1076(2)	7588(1)	1594(1)	23(1)
C(8)	333(2)	8488(1)	3169(1)	14(1)
C(9)	-1344(2)	8800(1)	3258(1)	17(1)
C(10)	-1678(2)	9639(1)	3243(1)	20(1)
C(11)	-324(2)	10178(1)	3137(1)	22(1)
C(12)	1335(2)	9879(1)	3042(1)	22(1)
C(13)	1698(2)	9035(1)	3051(1)	17(1)

8748(1)

6079(1)

5576(1)

4755(1)

4425(1)

4913(1)

5738(1)

6241(1)

7755(1)

7473(1)

7944(1)

8709(1)

8988(1)

8526(1)

8864(1)

3533(2)

1736(2)

1729(2)

2237(2)

2746(2)

2747(2)

2244(2)

2281(3)

2948(2)

4634(2)

6176(2)

6042(2)

4380(2)

2818(2)

1052(2)

2939(1)

4418(1)

3819(1)

3890(1)

4568(1)

5167(1)

5110(1)

5781(1)

4625(1)

4518(1)

4716(1)

5026(1)

5146(1)

4953(1)

5099(1)

25(1)

16(1)

21(1)

27(1)

30(1)

28(1)

21(1)

30(1)

15(1)

17(1)

19(1)

22(1)

19(1)

16(1)

22(1)

Table S6. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for compound

Table S7. Anisotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for compound **1f**. The anisotropic displacement factor exponent takes the form: $-2p^2[\ h^2a^{*2}U^{11} + ... + 2\ h\ k\ a^*\ b^*\ U^{12}\]$.

	1 -		-			
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	13(1)	12(1)	16(1)	2(1)	2(1)	0(1)
C(1)	15(1)	10(1)	19(1)	-2(1)	2(1)	1(1)
P(2)	13(1)	14(1)	16(1)	1(1)	2(1)	0(1)
C(2)	22(1)	19(1)	20(1)	-2(1)	5(1)	-2(1)
C(3)	20(1)	25(1)	32(1)	-8(1)	9(1)	-7(1)
C(4)	16(1)	27(1)	36(1)	-14(1)	-1(1)	-1(1)
C(5)	24(1)	20(1)	22(1)	-7(1)	-5(1)	5(1)
C(6)	22(1)	12(1)	19(1)	-3(1)	1(1)	3(1)
C(7)	34(1)	18(1)	16(1)	3(1)	1(1)	1(1)
C(8)	16(1)	12(1)	13(1)	2(1)	0(1)	-1(1)

C(9)	17(1)	16(1)	18(1)	1(1)	3(1)	-2(1)
C(10)	19(1)	17(1)	22(1)	-2(1)	3(1)	3(1)
C(11)	29(1)	12(1)	24(1)	1(1)	2(1)	1(1)
C(12)	24(1)	16(1)	24(1)	4(1)	1(1)	-7(1)
C(13)	15(1)	19(1)	16(1)	4(1)	0(1)	-2(1)
C(14)	17(1)	24(1)	34(1)	9(1)	7(1)	-2(1)
C(15)	13(1)	14(1)	23(1)	3(1)	2(1)	-2(1)
C(16)	23(1)	15(1)	22(1)	3(1)	0(1)	-2(1)
C(17)	31(1)	14(1)	35(1)	-3(1)	1(1)	-3(1)
C(18)	32(1)	11(1)	44(1)	7(1)	-6(1)	-2(1)
C(19)	27(1)	22(1)	32(1)	14(1)	-5(1)	-6(1)
C(20)	16(1)	22(1)	23(1)	6(1)	0(1)	-5(1)
C(21)	37(1)	34(1)	20(1)	8(1)	4(1)	0(1)
C(22)	15(1)	16(1)	13(1)	3(1)	1(1)	-1(1)
C(23)	18(1)	16(1)	15(1)	2(1)	2(1)	2(1)
C(24)	15(1)	24(1)	19(1)	4(1)	3(1)	2(1)
C(25)	19(1)	21(1)	23(1)	3(1)	1(1)	-6(1)
C(26)	23(1)	13(1)	21(1)	0(1)	2(1)	-1(1)
C(27)	18(1)	16(1)	15(1)	3(1)	2(1)	1(1)
C(28)	21(1)	20(1)	26(1)	-6(1)	4(1)	3(1)

2.3 Crystal Structure Determination of 2a

Figure S9. ORTEP Plot of compound 2a. Ellipsoids are drawn at the 50% probability level.

Table S8. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å ² x 10^3) for compound
2a . $U(eq)$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Z	U(eq)
Au(1)	5511(1)	2787(1)	5257(1)	13(1)
Au(2)	2017(1)	2207(1)	2655(1)	13(1)
Cl(1)	7205(2)	3363(1)	5752(2)	23(1)
Cl(2)	275(2)	1711(1)	2168(2)	21(1)
P(1)	3826(2)	2335(1)	4706(1)	11(1)
P(2)	3722(2)	2626(1)	3206(1)	11(1)
C(1)	2588(7)	2907(4)	5162(6)	14(1)
C(2)	1534(7)	2591(5)	5359(5)	15(1)
C(3)	626(7)	3106(5)	5663(6)	15(1)
C(4)	783(7)	3954(5)	5730(5)	15(1)
C(5)	1876(6)	4292(6)	5530(5)	15(1)
C(6)	2741(6)	3765(4)	5258(5)	15(1)
C(7)	-186(6)	4520(5)	6010(5)	14(1)
C(8)	3608(7)	1224(5)	4716(6)	14(2)
C(9)	4527(7)	719(5)	5006(4)	14(1)
C(10)	4489(9)	-131(5)	4932(7)	15(1)
C(11)	3501(7)	-528(5)	4574(5)	19(2)
C(12)	2586(13)	-39(4)	4293(9)	13(3)
C(13)	2622(7)	819(5)	4372(5)	14(1)
C(14)	3463(7)	-1458(5)	4500(6)	14(2)
C(15)	3959(8)	3749(6)	3168(6)	22(2)
C(16)	3043(7)	4224(5)	2852(5)	15(2)
C(17)	3113(9)	5097(5)	2882(7)	15(1)
C(18)	4069(7)	5493(5)	3255(6)	15(1)
C(19)	4983(14)	5001(4)	3567(10)	14(3)
C(20)	4932(7)	4143(5)	3540(5)	14(2)
C(21)	4124(8)	6427(5)	3318(6)	22(2)
C(22)	4933(6)	2034(5)	2751(6)	15(1)
C(23)	4724(6)	1193(5)	2568(5)	15(2)
C(24)	5601(6)	701(5)	2271(5)	15(2)
C(25)	6710(7)	999(5)	2136(5)	14(2)
C(26)	6922(7)	1868(6)	2334(6)	22(2)
C(27)	6047(6)	2358(5)	2605(6)	22(2)
C(28)	7669(6)	426(5)	1791(5)	15(1)

Table S9. Anisotropic displacement parameters ($Å^2 x 10^3$) for compound **2a**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$.

U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
11(1)	13(1)	16(1)	1(1)	-3(1)	-1(1)
11(1)	14(1)	14(1)	0(1)	-1(1)	0(1)
16(1)	17(1)	35(1)	0(1)	-9(1)	-2(1)
14(1)	22(1)	25(1)	-1(1)	-7(1)	-3(1)
11(1)	12(1)	11(1)	1(1)	0(1)	-1(1)
9(1)	11(1)	14(1)	0(1)	1(1)	-1(1)
	U ¹¹ 11(1) 11(1) 16(1) 14(1) 11(1) 9(1)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 11(1) & 13(1) \\ 11(1) & 14(1) \\ 16(1) & 17(1) \\ 14(1) & 22(1) \\ 11(1) & 12(1) \\ 9(1) & 11(1) \end{array}$	$\begin{array}{c ccccc} U^{11} & U^{22} & U^{33} \\ \hline 11(1) & 13(1) & 16(1) \\ 11(1) & 14(1) & 14(1) \\ 16(1) & 17(1) & 35(1) \\ 14(1) & 22(1) & 25(1) \\ 11(1) & 12(1) & 11(1) \\ 9(1) & 11(1) & 14(1) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

C(1)	15(3)	16(3)	10(3)	-2(3)	-1(2)	4(3)
C(2)	21(3)	12(3)	13(3)	-5(3)	2(3)	0(3)
C(3)	8(3)	23(3)	13(3)	1(3)	1(2)	-2(2)
C(4)	15(3)	21(3)	10(3)	-7(3)	1(3)	-5(3)
C(5)	8(3)	23(3)	13(3)	1(3)	1(2)	-2(2)
C(6)	15(3)	21(3)	10(3)	-7(3)	1(3)	-5(3)
C(7)	15(3)	16(3)	10(3)	-2(3)	-1(2)	4(3)
C(8)	16(4)	9(3)	18(4)	-2(2)	6(3)	3(3)
C(9)	15(3)	16(3)	9(3)	4(2)	1(2)	3(3)
C(10)	21(3)	12(3)	13(3)	-5(3)	2(3)	0(3)
C(11)	36(5)	9(4)	12(4)	-1(3)	16(4)	2(4)
C(12)	17(7)	13(7)	10(7)	0(3)	2(5)	-6(3)
C(13)	15(3)	16(3)	9(3)	4(2)	1(2)	3(3)
C(14)	16(4)	9(3)	18(4)	-2(2)	6(3)	3(3)
C(15)	25(4)	21(4)	21(4)	7(3)	4(3)	-4(3)
C(16)	11(4)	21(4)	14(5)	-3(3)	-5(4)	-1(3)
C(17)	14(3)	13(3)	19(4)	8(2)	2(3)	0(2)
C(18)	14(3)	13(3)	19(4)	8(2)	2(3)	0(2)
C(19)	15(6)	17(7)	11(7)	2(3)	4(6)	-9(3)
C(20)	11(4)	18(4)	12(4)	-1(3)	1(3)	7(4)
C(21)	25(4)	21(4)	21(4)	7(3)	4(3)	-4(3)
C(22)	9(3)	19(3)	17(3)	6(3)	2(2)	3(2)
C(23)	15(4)	18(4)	12(4)	-3(4)	-2(3)	-8(3)
C(24)	15(4)	13(4)	17(4)	-4(3)	2(3)	-4(3)
C(25)	10(4)	20(4)	10(4)	7(3)	0(3)	10(3)
C(26)	10(3)	29(4)	27(3)	20(3)	7(3)	0(3)
C(27)	10(3)	29(4)	27(3)	20(3)	7(3)	0(3)
C(28)	9(3)	19(3)	17(3)	6(3)	2(2)	3(2)

2.4 Crystal Structure Determination of 2b

Figure S10. ORTEP Plot of compound 2b. Ellipsoids are drawn at the 50% probability level.

Table S10. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for compound **2b**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	у	Z	U(eq)
Au(1)	544(1)	3714(1)	1576(1)	12(1)
Cl(1)	1371(1)	2403(1)	2346(1)	21(1)
P(1)	-179(1)	4985(1)	718(1)	10(1)
O(1)	-4103(2)	4692(2)	-245(2)	14(1)
C(1)	-1377(3)	4868(3)	472(3)	12(1)
O(2)	1021(2)	9190(2)	2000(2)	17(1)
C(2)	-1765(3)	4000(3)	8(3)	12(1)
C(3)	-2675(3)	3906(3)	-255(3)	11(1)
C(4)	-3210(3)	4685(3)	-6(3)	11(1)
C(5)	-2831(3)	5531(3)	513(3)	13(1)
C(6)	-1922(3)	5629(3)	733(3)	13(1)
C(7)	-4525(3)	3987(3)	-956(3)	17(1)
C(8)	130(3)	6253(3)	1153(3)	11(1)
C(9)	-286(3)	7150(3)	739(3)	13(1)
C(10)	22(3)	8109(3)	1048(3)	14(1)
C(11)	768(3)	8213(3)	1746(3)	12(1)
C(12)	1204(3)	7335(3)	2158(3)	13(1)

C(13)	873(3)	6369(3)	1868(3)	15(1)
C(14)	1831(3)	9341(3)	2655(3)	21(1)

Table S11. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for compound **2b**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(1)	10(1)	10(1)	13(1)	3(1)	0(1)	0(1)
Cl(1)	17(1)	16(1)	28(1)	9(1)	-2(1)	2(1)
P(1)	8(1)	11(1)	12(1)	1(1)	1(1)	0(1)
O(1)	6(2)	12(2)	21(2)	-5(1)	-1(1)	1(1)
C(1)	7(2)	14(2)	14(2)	1(2)	1(2)	0(2)
O(2)	18(2)	11(2)	22(2)	-4(1)	-2(1)	-3(2)
C(2)	10(2)	12(2)	14(2)	5(2)	6(2)	8(2)
C(3)	14(2)	6(2)	13(2)	0(2)	2(2)	-1(2)
C(4)	7(2)	13(2)	13(2)	4(2)	0(2)	-2(2)
C(5)	12(2)	16(2)	11(2)	-1(2)	6(2)	5(2)
C(6)	14(2)	13(2)	13(2)	-2(2)	4(2)	-5(2)
C(7)	8(2)	20(3)	24(3)	-4(2)	4(2)	-3(2)
C(8)	7(2)	14(2)	13(2)	-2(2)	4(2)	-3(2)
C(9)	8(2)	15(2)	16(3)	-1(2)	5(2)	3(2)
C(10)	11(2)	12(2)	18(3)	1(2)	3(2)	4(2)
C(11)	12(3)	14(2)	11(2)	0(2)	5(2)	-2(2)
C(12)	10(2)	16(3)	13(2)	1(2)	2(2)	1(2)
C(13)	16(2)	14(2)	14(2)	3(2)	2(2)	2(2)
C(14)	19(3)	16(3)	27(3)	-5(2)	-3(2)	-5(2)

2.5 Crystal Structure Determination of 2c

Figure S11. ORTEP Plot of compound 2c. Ellipsoids are drawn at the 50% probability level.

	X	у	Z	U(eq)
Au(1)	7013(1)	1802(1)	2680(1)	15(1)
Cl(1)	9215(1)	2562(1)	1304(1)	23(1)
P(1)	4903(1)	962(1)	4023(1)	15(1)
N(1)	2468(4)	-1326(4)	1289(5)	20(1)
C(1)	4119(5)	280(5)	3236(5)	15(1)
N(2)	951(5)	5248(5)	5933(5)	23(1)
C(2)	4881(5)	-715(5)	2693(5)	18(1)
C(3)	4354(5)	-1228(6)	2034(5)	18(1)
C(4)	3010(5)	-766(5)	1899(5)	16(1)
C(5)	2273(5)	250(5)	2414(6)	19(1)
C(6)	2814(5)	756(5)	3074(5)	18(1)
C(7)	1396(5)	-492(6)	649(6)	25(1)
C(8)	3314(6)	-2333(6)	712(6)	24(1)
C(9)	3689(5)	2201(5)	4627(5)	15(1)
C(10)	2336(5)	1856(5)	5571(5)	15(1)
C(11)	1456(5)	2845(5)	6017(5)	18(1)
C(12)	1849(5)	4255(5)	5537(5)	18(1)
C(13)	3211(5)	4579(6)	4615(5)	20(1)
C(14)	4108(5)	3585(5)	4166(5)	18(1)

Table S12. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for compound **2c**. U(eq) is defined as one third of the trace of the orthogonalizedU_{ij} tensor.

C(15)	-346(5)	4797(6)	7097(6)	26(1)
C(16)	1410(6)	6671(6)	5450(6)	28(1)
Cl11	13613(2)	4449(2)	155(2)	40(1)
C11	12282(6)	3943(6)	-135(6)	29(1)
Cl21	12802(2)	3865(2)	-1783(2)	38(1)

Table S13. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for compound **2c**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(1)	14(1)	15(1)	15(1)	-6(1)	-4(1)	-2(1)
Cl(1)	15(1)	23(1)	28(1)	-10(1)	-2(1)	-3(1)
P(1)	16(1)	14(1)	14(1)	-5(1)	-5(1)	-2(1)
N(1)	22(2)	19(3)	26(3)	-12(2)	-13(2)	3(2)
C(1)	18(3)	14(3)	14(3)	-3(2)	-8(2)	-2(2)
N(2)	29(3)	16(2)	21(3)	-8(2)	-4(2)	0(2)
C(2)	13(3)	23(3)	17(3)	-10(2)	-4(2)	2(2)
C(3)	18(3)	20(3)	18(3)	-13(2)	-4(2)	6(2)
C(4)	22(3)	12(3)	15(3)	-3(2)	-9(2)	-4(2)
C(5)	20(3)	15(3)	29(3)	-11(2)	-18(2)	10(2)
C(6)	23(3)	16(3)	18(3)	-10(2)	-9(2)	3(2)
C(7)	26(3)	27(3)	30(3)	-16(3)	-14(3)	1(3)
C(8)	34(3)	21(3)	26(3)	-14(3)	-15(3)	3(3)
C(9)	16(3)	16(3)	15(3)	-6(2)	-9(2)	2(2)
C(10)	21(3)	8(3)	18(3)	-3(2)	-12(2)	-1(2)
C(11)	13(3)	21(3)	18(3)	-6(2)	-4(2)	-1(2)
C(12)	23(3)	19(3)	13(3)	-6(2)	-10(2)	2(2)
C(13)	26(3)	17(3)	18(3)	-6(2)	-8(2)	-5(2)
C(14)	20(3)	19(3)	16(3)	-10(2)	-2(2)	-5(2)
C(15)	24(3)	29(3)	19(3)	-10(3)	-2(2)	3(3)
C(16)	33(3)	21(3)	28(3)	-15(3)	-3(3)	0(3)
Cl11	26(1)	46(1)	64(1)	-35(1)	-15(1)	0(1)
C11	23(3)	24(3)	37(4)	-9(3)	-9(3)	-2(3)
Cl21	36(1)	42(1)	44(1)	-23(1)	-18(1)	8(1)

2.6 Crystal Structure Determination of 2d

Figure S12. ORTEP Plot of compound 2d. Ellipsoids are drawn at the 50% probability level.

Table S14. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for compound **2d**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	у	Z	U(eq)
Au(1)	4620(1)	4678(1)	2928(1)	24(1)
Cl(1)	6141(3)	5620(2)	2967(2)	43(1)
P(1)	3121(2)	3785(2)	2821(2)	15(1)
O(1)	777(5)	2866(5)	3226(4)	22(1)
C(1)	1999(8)	3700(6)	3981(6)	17(2)
Au(2)	2507(1)	1806(1)	1393(1)	14(1)
Cl(2)	1198(2)	1611(2)	316(2)	24(1)
P(2)	3704(2)	2005(2)	2516(2)	14(1)
O(2)	4107(5)	3876(4)	716(4)	18(1)
C(2)	2213(8)	4071(7)	4828(6)	20(2)
O(3)	4668(5)	2088(5)	4407(4)	21(1)
C(3)	1439(8)	3970(7)	5770(7)	26(2)
O(4)	5026(5)	-74(5)	1923(5)	28(1)
C(4)	438(9)	3466(8)	5841(7)	30(2)
C(5)	186(8)	3083(7)	5028(7)	25(2)
C(6)	958(8)	3211(7)	4092(6)	22(2)
C(7)	-264(9)	2364(8)	3286(7)	34(2)
C(8)	2269(7)	4510(7)	1749(6)	17(2)
C(9)	1017(8)	5141(7)	1879(7)	23(2)
C(10)	440(8)	5747(7)	1033(7)	24(2)
C(11)	1088(8)	5704(7)	51(7)	25(2)
C(12)	2316(8)	5089(7)	-114(6)	22(2)
C(13)	2895(7)	4496(7)	744(6)	18(2)
C(14)	4757(8)	3627(8)	-264(6)	29(2)
C(15)	3390(7)	1197(6)	3793(6)	15(1)
C(16)	2587(8)	464(7)	3963(6)	24(1)

C(17)	2262(9)	-112(7)	4936(7)	28(2)
C(18)	2754(8)	65(7)	5766(6)	28(2)
C(19)	3564(8)	771(7)	5623(6)	26(2)
C(20)	3891(8)	1354(7)	4642(7)	23(2)
C(21)	5131(9)	2365(8)	5250(7)	29(2)
C(22)	5458(7)	1652(6)	2092(6)	15(1)
C(23)	6215(8)	2300(7)	2010(6)	24(1)
C(24)	7501(8)	2029(7)	1599(6)	27(2)
C(25)	7925(8)	1025(7)	1272(6)	25(1)
C(26)	7127(8)	302(8)	1354(6)	25(1)
C(27)	5866(8)	600(7)	1785(6)	22(2)
C(28)	5439(10)	-1091(9)	1509(10)	50(3)
O11	11565(7)	-1607(6)	3264(5)	47(2)
C21	12151(10)	-2045(10)	1590(8)	47(3)
C31	10765(10)	-1475(9)	1691(8)	46(2)
C41	10622(10)	-956(8)	2634(8)	38(2)
C11	12429(10)	-2365(10)	2677(8)	46(2)

Table S15. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for compound **2d**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(1)	25(1)	26(1)	22(1)	-5(1)	-5(1)	-8(1)
Cl(1)	45(2)	56(2)	41(1)	-19(1)	-2(1)	-30(1)
P(1)	14(1)	16(1)	14(1)	-2(1)	-1(1)	-1(1)
O(1)	20(3)	27(3)	21(3)	-2(3)	-2(3)	-11(3)
C(1)	23(5)	11(4)	13(4)	3(3)	-1(3)	-4(3)
Au(2)	12(1)	17(1)	14(1)	-3(1)	-3(1)	-1(1)
Cl(2)	18(1)	31(1)	24(1)	-9(1)	-10(1)	0(1)
P(2)	10(1)	17(1)	13(1)	-1(1)	-3(1)	-2(1)
O(2)	14(3)	20(3)	15(3)	0(2)	1(2)	2(2)
C(2)	17(4)	21(4)	17(4)	1(3)	-5(3)	1(4)
O(3)	24(3)	24(3)	17(3)	-6(2)	-9(3)	-2(3)
C(3)	25(5)	33(5)	20(5)	-5(4)	-6(4)	-5(4)
O(4)	19(3)	21(3)	45(4)	-15(3)	-2(3)	-2(3)
C(4)	28(5)	34(5)	23(5)	-7(4)	11(4)	-3(4)
C(5)	18(5)	28(5)	27(5)	-8(4)	9(4)	-10(4)
C(6)	26(5)	16(4)	22(4)	-2(4)	-10(4)	2(4)
C(7)	28(5)	47(6)	35(5)	-18(5)	0(4)	-16(5)
C(8)	14(4)	20(4)	17(4)	1(3)	-5(3)	0(3)
C(9)	20(5)	25(5)	22(4)	-1(4)	1(4)	-6(4)
C(10)	20(5)	21(5)	31(5)	-5(4)	-11(4)	4(4)
C(11)	23(5)	17(4)	35(5)	6(4)	-16(4)	-2(4)
C(12)	28(5)	21(4)	16(4)	3(3)	-4(4)	-8(4)
C(13)	14(4)	21(4)	22(4)	1(4)	-4(3)	-8(4)
C(14)	26(5)	39(5)	17(4)	-7(4)	4(4)	-2(4)
C(15)	18(3)	14(3)	8(3)	0(2)	-5(2)	5(2)
C(16)	15(3)	30(3)	17(3)	2(3)	-4(3)	7(3)
C(17)	26(5)	22(5)	26(5)	10(4)	-2(4)	2(4)

C(18)	29(5)	29(5)	15(4)	6(4)	0(4)	6(4)
C(19)	30(5)	22(5)	18(4)	0(4)	-7(4)	10(4)
C(20)	14(4)	22(4)	28(5)	-8(4)	1(4)	8(4)
C(21)	28(5)	31(5)	29(5)	-4(4)	-17(4)	-2(4)
C(22)	18(3)	14(3)	8(3)	0(2)	-5(2)	5(2)
C(23)	15(3)	30(3)	17(3)	2(3)	-4(3)	7(3)
C(24)	28(5)	30(5)	24(5)	14(4)	-7(4)	-17(4)
C(25)	12(3)	35(4)	22(3)	-1(3)	2(3)	1(3)
C(26)	12(3)	35(4)	22(3)	-1(3)	2(3)	1(3)
C(27)	19(5)	28(5)	18(4)	-5(4)	-3(4)	-2(4)
C(28)	36(6)	45(6)	85(9)	-45(6)	4(6)	-18(5)
011	63(5)	48(5)	38(4)	1(4)	-23(4)	-21(4)
C21	33(6)	54(7)	48(7)	-13(6)	7(5)	-5(5)
C31	28(4)	55(5)	49(5)	1(4)	-8(4)	-1(4)
C41	54(7)	27(5)	37(6)	-12(4)	-8(5)	-7(5)
C11	28(4)	55(5)	49(5)	1(4)	-8(4)	-1(4)

2.7 Crystal Structure Determination of 2e

The molecular structure contained two strongly disordered DCM molecules. Refinement was done by using the squeeze routine in platon.²

Figure S13. ORTEP Plot of compound 2e. Ellipsoids are drawn at the 50% probability level.

	Х	у	Z	U(eq)
Au(1)	11267(1)	2386(1)	3292(1)	30(1)
Au(2)	7485(1)	2367(1)	1508(1)	24(1)
Au(3)	13298(1)	2773(1)	-1485(1)	23(1)
Au(4)	16627(1)	2557(1)	-3462(1)	27(1)
Cl(1)	13024(3)	2714(2)	3804(2)	50(1)
Cl(2)	5726(2)	2132(2)	993(2)	35(1)
Cl(3)	11667(2)	3042(2)	-897(1)	32(1)
Cl(4)	18302(3)	2085(2)	-3928(2)	47(1)
P(1)	9568(3)	1979(2)	2828(1)	24(1)
P(2)	9186(2)	2740(2)	1995(1)	24(1)
P(3)	14881(2)	2408(2)	-2035(1)	22(1)
P(4)	15038(2)	3018(2)	-2964(1)	23(1)
N(1)	9283(8)	1018(6)	3928(4)	33(3)
N(2)	11610(8)	778(6)	2467(5)	34(3)
N(3)	9141(8)	4176(6)	1180(5)	31(2)
N(4)	9354(8)	1777(6)	668(4)	29(2)
N(5)	14995(7)	1143(5)	-1071(4)	23(2)
N(6)	15446(7)	3813(5)	-957(4)	22(2)
N(7)	17034(8)	4424(5)	-3099(4)	26(2)
N(8)	14471(8)	3746(6)	-4094(4)	35(3)
C(1)	8266(9)	2025(6)	3327(5)	22(3)
C(2)	7309(9)	2520(7)	3217(5)	29(2)
C(3)	6369(10)	2518(7)	3614(5)	29(2)
C(4)	6370(11)	2000(7)	4119(6)	44(4)
C(5)	7327(11)	1513(7)	4234(6)	39(3)
C(6)	8269(10)	1515(6)	3833(5)	29(3)
C(7)	8998(10)	67(7)	3897(6)	42(3)
C(8)	9916(10)	1276(8)	4509(5)	45(4)
C(9)	9471(9)	878(6)	2446(5)	24(3)
C(10)	8369(9)	484(7)	2296(5)	27(3)
C(10)	8263(10)	-366(7)	2023(5)	30(3)
C(12)	9207(11)	-831(8)	1882(6)	47(4)
C(12)	10307(10)	-451(7)	2012(6)	46(4)
C(13)	10467(10)	408(7)	2301(6)	32(3)
C(15)	12119(10)	363(8)	2984(6)	45(4)
C(16)	12376(10)	815(8)	1928(6)	48(4)
C(17)	9267(9)	3871(6)	2303(5)	22(3)
C(18)	9260(8)	4177(6)	2946(5)	22(3)
C(19)	9161(8)	5050(7)	3142(5)	22(3) 24(3)
C(20)	9045(9)	5652(7)	2673(5)	29(3)
C(21)	9059(8)	5375(8)	2013(5)	$\frac{2}{(3)}$
C(21)	91/18(9)	4494(7)	1846(5)	25(3)
C(22)	80/10(10)	4+9+(7) 1260(7)	854(5)	23(3) A0(3)
C(23)	10185(0)		831(5)	33(3)
C(24)	10105(7)		1530(5)	22(3) 22(3)
C(23)	10400(9)	2307(0)	10000	22(3)

Table S16. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for compound **2e**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(26)	11558(10)	2972(7)	1759(6)	30(3)
C(27)	12556(10)	2940(8)	1395(6)	37(3)
C(28)	12505(10)	2507(7)	793(5)	32(3)
C(29)	11475(10)	2139(8)	561(6)	35(3)
C(30)	10464(10)	2167(7)	914(5)	28(3)
C(31)	9296(12)	821(7)	662(6)	56(4)
C(32)	9042(10)	2072(8)	48(6)	42(3)
C(33)	14891(9)	1242(6)	-2212(5)	19(3)
C(34)	14804(8)	834(7)	-2823(5)	25(3)
C(35)	14685(9)	-75(7)	-2931(6)	28(3)
C(36)	14687(9)	-585(7)	-2413(6)	30(3)
C(37)	14785(9)	-199(6)	-1802(6)	30(3)
C(38)	14906(9)	719(6)	-1707(5)	24(3)
C(39)	14022(10)	918(7)	-669(5)	31(3)
C(40)	16117(9)	986(7)	-762(5)	30(3)
C(41)	16310(9)	2722(6)	-1703(5)	18(2)
C(42)	17288(9)	2306(7)	-1953(6)	31(3)
C(43)	18396(9)	2569(7)	-1726(6)	29(3)
C(44)	18531(10)	3232(7)	-1235(5)	29(3)
C(45)	17573(9)	3645(6)	-990(6)	28(3)
C(46)	16436(9)	3400(7)	-1228(5)	25(3)
C(47)	15160(9)	3499(7)	-345(5)	35(3)
C(48)	15556(9)	4779(7)	-942(5)	35(3)
C(49)	15045(9)	4176(6)	-2724(5)	21(3)
C(50)	14029(10)	4517(7)	-2456(5)	28(3)
C(51)	13942(9)	5413(7)	-2338(5)	29(3)
C(52)	14885(10)	5980(7)	-2481(5)	34(3)
C(53)	15882(10)	5665(7)	-2714(6)	34(3)
C(54)	15990(9)	4748(6)	-2844(5)	21(3)
C(55)	17926(9)	4363(7)	-2613(6)	37(3)
C(56)	17533(11)	4863(8)	-3639(6)	53(4)
C(57)	13612(9)	2791(7)	-3350(5)	24(3)
C(58)	12708(10)	2252(6)	-3130(6)	32(3)
C(59)	11657(10)	2166(7)	-3457(5)	29(3)
C(60)	11527(10)	2581(7)	-4015(6)	36(3)
C(61)	12413(10)	3091(7)	-4240(6)	39(3)
C(62)	13469(10)	3201(7)	-3906(5)	31(3)
C(63)	14147(11)	4655(7)	-4192(6)	50(4)
C(64)	15016(10)	3366(8)	-4672(5)	46(4)

Table S17. Anisotropic displacement parameters ($\mathring{A}^2 x \ 10^3$) for compound **2e**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(1)	31(1)	26(1)	31(1)	5(1)	-7(1)	-7(1)
Au(2)	23(1)	23(1)	26(1)	2(1)	-2(1)	-3(1)
Au(3)	20(1)	23(1)	25(1)	2(1)	1(1)	0(1)
Au(4)	24(1)	29(1)	28(1)	0(1)	3(1)	-1(1)

Cl(1)	41(2)	52(2)	56(3)	18(2)	-26(2)	-22(2)
Cl(2)	29(2)	36(2)	41(2)	8(2)	-12(2)	-8(1)
Cl(3)	22(2)	35(2)	40(2)	10(2)	8(1)	9(1)
Cl(4)	37(2)	58(2)	46(2)	1(2)	15(2)	12(2)
P(1)	29(2)	19(2)	24(2)	3(1)	1(2)	-2(1)
P(2)	22(2)	22(2)	25(2)	-1(1)	0(1)	-4(1)
P(3)	22(2)	20(2)	24(2)	2(1)	-1(1)	-1(1)
P(4)	22(2)	22(2)	25(2)	2(1)	-1(1)	-3(1)
N(1)	45(7)	28(6)	27(6)	9(5)	-3(5)	2(5)
N(2)	36(6)	25(5)	39(7)	-5(5)	-13(5)	-1(5)
N(3)	24(6)	35(6)	33(7)	5(5)	5(5)	-7(5)
N(4)	30(6)	33(6)	23(6)	-3(5)	-2(5)	-10(5)
N(5)	26(5)	27(5)	19(6)	7(4)	-1(4)	2(4)
N(6)	24(5)	19(5)	20(6)	-11(4)	-2(4)	-7(4)
N(7)	30(6)	19(5)	27(6)	-5(4)	11(5)	6(4)
N(8)	38(6)	39(6)	27(6)	7(5)	3(5)	-12(5)
C(1)	29(7)	11(5)	24(7)	-8(5)	7(5)	-4(5)
C(2)	31(5)	26(4)	30(6)	8(4)	8(4)	-9(4)
C(3)	31(5)	26(4)	30(6)	8(4)	8(4)	-9(4)
C(4)	50(9)	30(7)	51(9)	-5(7)	35(7)	0(7)
C(5)	61(9)	23(7)	34(8)	5(6)	9(7)	-3(7)
C(6)	46(8)	10(6)	32(8)	3(5)	14(6)	-2(6)
C(7)	49(9)	27(7)	50(9)	7(6)	-6(7)	1(6)
C(8)	54(9)	58(9)	23(8)	13(7)	-11(7)	-21(7)
C(9)	30(7)	19(6)	24(7)	4(5)	8(6)	-1(5)
C(10)	21(6)	37(7)	24(7)	6(6)	1(5)	3(6)
C(11)	28(7)	28(7)	34(8)	2(6)	-11(6)	-14(6)
C(12)	44(9)	35(8)	60(10)	0(7)	-4(8)	1(7)
C(13)	25(7)	27(7)	83(12)	-15(7)	-1(7)	10(6)
C(14)	25(7)	29(7)	40(8)	-5(6)	5(6)	-3(6)
C(15)	42(8)	53(9)	38(9)	-3(7)	-4(7)	-20(7)
C(16)	41(8)	50(9)	54(10)	0(7)	8(7)	7(7)
C(17)	22(6)	14(6)	28(7)	-3(5)	-2(5)	-9(5)
C(18)	19(6)	21(6)	26(7)	-3(5)	1(5)	4(5)
C(19)	19(6)	29(6)	25(7)	-4(5)	1(5)	3(5)
C(20)	24(7)	32(7)	30(8)	-1(6)	-4(6)	1(6)
C(21)	11(6)	49(8)	36(8)	20(7)	8(6)	4(6)
C(22)	18(6)	29(7)	28(7)	-4(6)	0(5)	-3(5)
C(23)	45(8)	51(8)	24(8)	11(6)	-11(6)	-6(7)
C(24)	46(8)	36(7)	16(7)	11(6)	6(6)	-3(6)
C(25)	22(6)	21(6)	21(7)	-1(5)	11(5)	3(5)
C(26)	36(7)	22(6)	30(8)	-2(6)	-4(6)	0(6)
C(27)	32(7)	51(8)	29(8)	6(7)	-3(6)	1(7)
C(28)	42(8)	28(7)	25(8)	2(6)	13(6)	-5(6)
C(29)	34(8)	46(8)	25(8)	1(6)	10(6)	-1(6)
C(30)	35(7)	25(6)	22(7)	0(5)	-4(6)	-14(6)
C(31)	82(11)	27(7)	55(10)	-14(7)	-2(9)	-22(7)
C(32)	30(7)	56(9)	37(9)	-11(7)	-7(6)	-6(7)
C(33)	20(6)	11(5)	26(7)	-1(5)	-3(5)	4(5)
C(34)	16(6)	22(6)	37(8)	-1(6)	1(6)	-6(5)

C(35)	23(6)	28(7)	34(8)	-5(6)	-5(6)	7(6)
C(36)	14(6)	26(6)	48(9)	-7(6)	-9(6)	-4(5)
C(37)	23(7)	17(6)	50(9)	4(6)	-1(6)	-1(5)
C(38)	18(6)	20(6)	37(8)	-2(6)	6(6)	9(5)
C(39)	51(8)	24(6)	19(7)	5(5)	1(6)	-4(6)
C(40)	37(7)	29(7)	24(7)	0(5)	-4(6)	-3(6)
C(41)	22(6)	21(6)	11(6)	6(5)	-8(5)	-11(5)
C(42)	29(7)	16(6)	47(9)	-6(6)	4(6)	0(5)
C(43)	22(7)	25(6)	41(8)	8(6)	-1(6)	-2(5)
C(44)	32(7)	25(6)	31(8)	15(6)	-2(6)	-4(6)
C(45)	31(7)	11(6)	43(8)	-1(5)	-5(6)	2(5)
C(46)	21(6)	22(6)	33(8)	5(5)	0(6)	-4(5)
C(47)	32(7)	42(7)	29(8)	-9(6)	5(6)	-6(6)
C(48)	28(7)	41(7)	35(8)	-6(6)	8(6)	3(6)
C(49)	14(6)	24(6)	25(7)	1(5)	-6(5)	4(5)
C(50)	35(7)	27(6)	24(7)	11(5)	-3(6)	-4(6)
C(51)	25(7)	35(7)	29(8)	5(6)	5(6)	5(6)
C(52)	37(8)	33(7)	30(8)	4(6)	-2(6)	-8(6)
C(53)	36(8)	17(6)	49(9)	10(6)	1(7)	-12(6)
C(54)	23(6)	11(5)	30(7)	1(5)	-9(5)	-1(5)
C(55)	18(6)	39(7)	53(9)	1(7)	-2(6)	1(6)
C(56)	47(9)	68(10)	46(10)	16(8)	12(7)	5(8)
C(57)	15(6)	23(6)	34(8)	1(5)	12(5)	4(5)
C(58)	40(8)	19(6)	35(8)	3(6)	3(6)	-1(6)
C(59)	24(7)	32(7)	31(8)	6(6)	1(6)	-2(6)
C(60)	37(8)	38(7)	30(8)	-8(6)	4(6)	-11(6)
C(61)	42(8)	47(8)	27(8)	4(6)	-13(7)	-7(7)
C(62)	42(8)	29(7)	20(7)	1(6)	-4(6)	-5(6)
C(63)	46(9)	43(8)	64(11)	26(8)	4(8)	-7(7)
C(64)	39(8)	77(10)	18(8)	-4(7)	-10(6)	-14(7)

2.8 Crystal Structure Determination of 2h

Figure S14. ORTEP Plot of compound 2h. Ellipsoids are drawn at the 50% probability level.

	X	У	Z	U(eq)
Au(1)	1524(1)	9718(1)	3174(1)	16(1)
P(1)	3435(2)	9784(1)	4894(1)	14(1)
F(1)	668(4)	7281(3)	947(2)	32(1)
O(1)	2248(5)	4525(3)	4905(3)	25(1)
C(1)	3179(6)	8202(4)	4953(4)	14(1)
F(2)	-1725(5)	6601(3)	-1192(2)	43(1)
O(2)	3139(5)	14003(3)	9050(3)	34(1)
C(2)	2760(6)	7965(4)	5856(4)	18(1)
F(3)	-3837(4)	8309(3)	-1801(2)	42(1)
C(3)	2445(6)	6727(4)	5805(4)	21(1)
F(4)	-3514(4)	10698(3)	-238(2)	33(1)
C(4)	2552(6)	5706(4)	4863(4)	18(1)
F(5)	-1196(4)	11373(2)	1916(2)	28(1)
C(5)	2959(6)	5921(4)	3955(4)	20(1)

Table S18. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for compound **2h**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(6)	3248(6)	7173(4)	4006(4)	18(1)
C(7)	2283(8)	3455(4)	3924(4)	30(1)
C(8)	3204(6)	10974(4)	6191(4)	14(1)
C(9)	2032(6)	11870(4)	6039(4)	20(1)
C(10)	1966(6)	12906(4)	6980(4)	24(1)
C(11)	3052(7)	13037(4)	8066(4)	23(1)
C(12)	4214(6)	12121(4)	8214(4)	22(1)
C(13)	4268(6)	11097(4)	7274(4)	16(1)
C(14)	2075(10)	15007(5)	8962(6)	53(2)
C(15)	-190(6)	9356(5)	1533(4)	21(1)
C(16)	-373(6)	8162(4)	689(4)	21(1)
C(17)	-1582(7)	7778(5)	-423(4)	28(1)
C(18)	-2659(7)	8631(5)	-730(4)	28(1)
C(19)	-2483(6)	9851(4)	78(4)	23(1)
C(20)	-1257(6)	10176(4)	1188(4)	23(1)

Table S19. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for compound **2h**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$.

-		-				
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(1)	13(1)	21(1)	14(1)	9(1)	0(1)	1(1)
P(1)	13(1)	15(1)	11(1)	5(1)	1(1)	2(1)
F(1)	37(2)	29(2)	29(2)	10(1)	6(1)	16(1)
O(1)	34(2)	16(2)	25(2)	9(2)	9(2)	2(1)
C(1)	10(1)	15(2)	21(2)	11(1)	3(1)	2(1)
F(2)	56(2)	39(2)	23(2)	0(1)	7(1)	14(2)
O(2)	41(2)	24(2)	29(2)	-3(2)	13(2)	9(2)
C(2)	17(2)	16(2)	15(2)	3(2)	4(2)	3(2)
F(3)	39(2)	53(2)	20(2)	10(2)	-6(1)	6(2)
C(3)	23(2)	25(2)	20(2)	14(2)	7(2)	3(2)
F(4)	29(2)	44(2)	36(2)	27(2)	7(1)	17(1)
C(4)	13(2)	17(2)	23(2)	9(2)	2(2)	1(2)
F(5)	34(2)	24(2)	26(2)	8(1)	9(1)	9(1)
C(5)	20(2)	16(2)	18(2)	4(2)	4(2)	1(2)
C(6)	20(2)	19(2)	14(2)	7(2)	4(2)	0(2)
C(7)	40(3)	16(2)	29(3)	8(2)	8(2)	2(2)
C(8)	10(1)	15(2)	21(2)	11(1)	3(1)	2(1)
C(9)	17(2)	24(2)	20(2)	10(2)	4(2)	2(2)
C(10)	20(2)	21(2)	35(3)	13(2)	12(2)	11(2)
C(11)	24(2)	18(2)	25(3)	1(2)	12(2)	2(2)
C(12)	21(2)	23(2)	20(2)	6(2)	6(2)	0(2)
C(13)	15(2)	15(2)	21(2)	6(2)	11(2)	2(2)
C(14)	73(5)	28(3)	55(4)	2(3)	29(4)	25(3)
C(15)	15(2)	36(3)	12(2)	11(2)	3(2)	-2(2)
C(16)	18(2)	24(2)	21(2)	10(2)	4(2)	8(2)
C(17)	25(2)	37(2)	20(2)	10(2)	2(1)	3(2)
C(18)	25(2)	37(2)	20(2)	10(2)	2(1)	3(2)
C(19)	19(2)	24(2)	29(2)	10(2)	12(1)	4(1)
C(20)	19(2)	24(2)	29(2)	10(2)	12(1)	4(1)

3. References

- [1] G. M. Sheldrick, Acta Cryst. 2008, A64, 112–122.
- [2] A. L. Spek, J. Appl. Cryst. 2003, 36, 7-13.