Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting Information

A highly selective fluorescence sensor for Al³⁺ and CN⁻ in aqueous solution: biological applications and DFT calculations

Tae Geun Jo,^a Jae Jun Lee,^a Eunju Nam,^b Kwon Hee Bok,^a Mi Hee Lim,^b* Cheal Kim*

^aDepartment of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: <u>chealkim@seoultech.ac.kr</u> ^bDepartment of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea._Fax: +82-52-217-5409; Tel: +82-52-217-

5422; E-mail: <u>mhlim@unist.ac.kr</u>

Fig. S1 Job plot for the binding of **1** with Al^{3+} . Absorbance at 310 nm was plotted as a function of the molar ratio $[Al^{3+}]/([1] + [Al^{3+}])$. The total concentration of aluminium ions with receptor **1** was 1.0 x 10⁻⁴ M.

Fig. S2 Positive-ion electrospray ionization mass spectrum of 1 (10 μ M) upon addition of Al(NO₃)₃ (1 equiv).

Fig. S3 Benesi-Hildebrand plot (fluorescence intensity at 491 nm) of 1 (5 μ M), assuming 1:1 stoichiometry for association between 1 and Al³⁺.

Fig. S4 Determination of the detection limit based on change in the ratio (fluorescence intensity at 491 nm) of 1 (5 μ M) with Al³⁺.

Fig. S5 Competitive selectivity of **1** (5 μ M) toward Al³⁺ (52 equiv) in the presence of other metal ions (52 equiv) with an excitation of 410 nm in bis-tris buffer solution.

Fig. S6 Fluorescence spectral changes of 1 (5 μ M) in the presence of Al³⁺, CN⁻, both Al³⁺ and CN⁻, respectively, in bis-tris buffer solution.

Fig. S7 Fluorescence intensity (at 491 nm) of **1**-Al³⁺ complex at different pH values (2-12) in bis-tris buffer solution.

Fig. S8 Absorption (at 491 nm) of 1 as a function of Al^{3+} concentration. [1] = 15 μ mol/L and $[Al^{3+}] = 0-70.0 \mu$ mol/L.

Fig. S9 ¹H NMR titration of receptor 1 with Al³⁺.

Fig. S10 (a) The theoretical excitation energies (TD-DFT method) and the experimental UV-vis spectrum of **1**. (b) The major electronic transition energies and molecular orbital

contributions for 1 (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of 1.

Fig. S11 (a) The theoretical excitation energies (TD-DFT method) and the experimental

UV-vis spectrum of $1-Al^{3+}$. (b) The major electronic transition energies and molecular orbital contributions for $1-Al^{3+}$ (H = HOMO and L = LUMO). (b) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of $1-Al^{3+}$.

Fig. S12 Frontier molecular orbitals and their energies involved in the UV-vis absorption of 1 and $1-Al^{3+}$ complex.

Fig. S13 Job plot for receptor **1** with CN⁻. Fluorescence intensity at 522 nm was plotted as a function of the molar ratio $[CN^-]/([1] + [CN^-])$. The total concentration of CN⁻ with receptor **1** was 1.0 x 10⁻⁴ M

Fig. S14 Negative-ion electrospray ionization mass spectrum of 1 (10 μ M) upon addition of TEA(CN) (5 equiv).

Fig. S15 Benesi-Hildebrand plot (fluorescence intensity at 522 nm) of 1 (30 μ M), assuming 1:1 stoichiometry for association between 1 and CN⁻.

Fig. S16 Determination of the detection limit based on change in the ratio (fluorescence intensity at 522 nm) of 1 (30 μ M) with CN⁻.

Fig. S17 Fluorescence spectral changes of 1 (30 μ M) in buffer-DMSO (1:1, v/v) solution: (a) 1 + CN⁻ (72 equiv), (b) 1 + CN⁻ (72 equiv) + Al³⁺ (2 equiv), (c) 1 + Al³⁺ (2 equiv), and (d) 1 + Al³⁺ (2 equiv) + EDTA (2 equiv) + CN⁻ (72 equiv).

Fig. S18 Fluorescence intensity at 522 nm of **1** and **1**-CN species at different pH values (2-12) in bis-tris buffer solution.

Fig. S19 Energy-minimized structures of (a) 1 and (b) 1-CN⁻ from B3LYP level.

Fig. S20 (a) The theoretical excitation energies (TD-DFT method) and the experimental UV-vis spectrum of **1**. (b) The major electronic transition energies and molecular orbital contributions for **1** (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr⁻³)

of molecular orbitals participating in the major singlet excited states of 1.

Fig. S21 (a) The theoretical excitation energies (TD-DFT method) and the experimental UV-vis spectrum of -CN⁻. (b) The major electronic transition energies and molecular orbital contributions for 1-CN⁻ (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of 1-CN⁻.

Fig. S22 Frontier molecular orbitals and their energies involved in the UV-vis absorption of 1 and 1-CN⁻