New Journal of Chemistry
 Triazole linked ruthenium(II) porphyrin: influence of connectivity pattern on photophysical and electrochemical properties

Smriti Arora, Ritika Nagpal, Prashant Chauhan, Shive Murat Singh Chauhan*
Bioorganic Laboratory, Department of Chemistry,
University of Delhi, Delhi-110 007, India.
smschauhan@chemistry.du.ac.in

Supporting Information

Materials Used

Pyrrole was distilled prior to use. All other reagents (Propionic acid- Spectrochem, 2-ethynyl pyridine - Alfa Aesar, 2-bromo pyridine - Spectrochem, LiCl - Spectrochem, $\mathrm{RuCl}_{3} . \mathrm{xH}_{2} \mathrm{O}-$ Alfa Aesar, Solvents - Analytical grade) were of analytical grade and used without further purification. cis- $\mathrm{Ru}(\text { bpy })_{2} \mathrm{Cl}_{2}$ was synthesized according to literature procedure. ${ }^{1}$ Solvents for the electrochemical measurements were distilled from calcium hydride under argon. The compounds were purified using silica gel (60-120 mesh), neutral alumina chromatography.

Experimental

Synthesis

5-(4-ethynylphenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrin (1)
To a solution of pyrrole ($0.8 \mathrm{ml}, 12.1 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(1.2 \mathrm{~L}), 3,5$-di-tert-butylbenzaldehyde (2 $\mathrm{g}, 9.17 \mathrm{mmol}), 4-\left[\left(\right.\right.$ trimethylsilyl)ethynyl]benzaldehyde ($0.617 \mathrm{~g}, 3.04 \mathrm{mmol}$) and $\mathrm{BF}_{3} \mathrm{OEt}_{2}(1.19$ $\mathrm{ml})$ were added. After stirring the reaction mixture for 1 h at rt , DDQ ($2.07 \mathrm{~g}, 9.11 \mathrm{mmol}$) was added and the mixture again stirred for 1 h . In order to neutralize the acid catalyst, $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{ml})$ was added and the solution stirred for 10 min . The solvent was evaporated and residue was chromatographed on silica gel with 1:9 ratio chloroform/petroleum ether mixture as eluent. The second band was collected in 17% yield. The compound ($528 \mathrm{mg}, 0.516 \mathrm{mmol}$) was then
dissolved in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ solution and $\mathrm{K}_{2} \mathrm{CO}_{3}(91 \mathrm{mg}, 1.63 \mathrm{mmol})$ was added. After stirring at rt for 2 h , the solution was quenched with $\mathrm{H}_{2} \mathrm{O}$, the organic phase was washed with CHCl_{3} and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ anhydrous, and the solvent was removed in vacuum affording the deprotected porphyrin derivative ($311 \mathrm{mg}, 62 \%$) as a pure red solid.
$\mathbf{R}_{\mathbf{f}}: 0.6$ (1:9 $\mathrm{CHCl}_{3} /$ Petroleum Ether); $\mathbf{U V}$-visible $\left(\mathbf{C H C l}_{\mathbf{3}}\right), \lambda_{\text {abs }} / \mathbf{n m}(\log \boldsymbol{\varepsilon}): 422$ (5.18), 517 (3.80), 554 (3.55), 592 (3.25), 648 (3.02); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\boldsymbol{\delta} \mathbf{~ p p m : ~} 8.90$ (m, $6 \mathrm{H}, \beta \mathrm{H}), 8.80(\mathrm{~d}, J=4.56 \mathrm{~Hz}, 2 \mathrm{H}, \beta \mathrm{H}), 8.18(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.08(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.87(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.79(\mathrm{~m}, 3 \mathrm{H}), 3.31$ (s, 1H), 1.51 ($\mathrm{s}, 54 \mathrm{H}, t$-butyl), -2.59 (br.s., $2 \mathrm{H},-\mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform-d) $\boldsymbol{\delta} \mathbf{~ p p m}: 148.8,148.1,146.5,146.5,139.4,134.5,129.9,129.8$, 121.1, 114.2, 83.8, 78.2, 31.8, 29.9; ESI-MS: calculated $974.6226\left(\mathrm{C}_{70} \mathrm{H}_{78} \mathrm{~N}_{4}\right)$, observed $975.6260(\mathrm{M}+\mathrm{H})^{+}$.

5-(4-acetamidophenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrin (4)

3,5-di-tert-butylbenzaldehyde ($2.99 \mathrm{~g}, 13.6 \mathrm{mmoles}$) and 4-acetamidobenzaldehyde ($0.74 \mathrm{~g}, 4.5$ mmoles) in propionic acid (240 ml) were refluxed with freshly distilled pyrrole $(1.25 \mathrm{ml}, 18$ mmoles) for 2 h . The reaction mixture was cooled to room temperature, poured in ice cold water and left overnight. The black residue so formed was filtered and chromatographed on silica gel with 8:2 ratio chloroform/petroleum ether mixture as eluent. The second band was collected in 17% yield (0.771 g).
$\mathbf{R}_{\mathbf{f}}: 0.3\left(\mathrm{CHCl}_{3}\right) ; \mathbf{U V}-\mathbf{v i s i b l e}\left(\mathbf{C H C l}_{3}\right), \lambda_{\text {abs }} / \mathbf{n m}(\log \boldsymbol{\varepsilon}): 422$ (5.02), 518 (4.66), 554 (4.65), 591 (4.61), 648 (4.61); ${ }^{1} \mathbf{H}$ NMR ($\left.400 ~ M H z, ~ C h l o r o f o r m-d\right) ~ \boldsymbol{~ p p m : ~} 8.91$ (s, 4H, $\beta \mathrm{H}$), 8.89 (d, $J=4.56 \mathrm{~Hz}, 2 \mathrm{H}, \beta \mathrm{H}), 8.85(\mathrm{~d}, J=5.04 \mathrm{~Hz}, 2 \mathrm{H}, \beta \mathrm{H}), 8.13$ (d, $J=8.28 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.09(\mathrm{~m}, 6 \mathrm{H}$, ArH), $7.80\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}\right.$), 7.52 (br.s., $1 \mathrm{H},-\mathrm{NH}$), $2.28\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.53(\mathrm{~s}, 54 \mathrm{H}, t$-butyl), -2.76 (br.s., $2 \mathrm{H},-\mathrm{NH}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \boldsymbol{\delta} \mathbf{~ p p m}: 168.6,148.7,141.3,138.2$, 137.4, 134.9, 129.9, 129.7, 123.6, 123.4, 121.5, 121.0, 117.9, 35.1, 31.8, 31.3, 29.8; ESI-MS: calculated $1007.6441\left(\mathrm{C}_{70} \mathrm{H}_{81} \mathrm{~N}_{5} \mathrm{O}\right)$, observed $1008.6519(\mathrm{M}+\mathrm{H})^{+}, 504.8278(\mathrm{M}+2 \mathrm{H})^{2+}$.

5-(4-aminophenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrin (5)

Porphyrin (1) ($0.234 \mathrm{~g}, 0.232$ mmoles) in a mixture of dry EtOH (120 mL) and conc. $\mathrm{HCl}(80$ mL) was vigorously stirred in a preheated oil bath at $80^{\circ} \mathrm{C}$ for 24 h under N_{2}. After completion of reaction, the solution was cooled to room temperature and then neutralized with 5% aq. NaOH solution to $\mathrm{pH} 8-9$. The mixture was extracted with $\mathrm{CHCl}_{3}(2 \times 100 \mathrm{ml})$. The residue was dissolved in a minimum amount of CHCl_{3} and chromatographed on silica gel with 1:1 ratio chloroform/petroleum ether mixture as eluent. The compound was collected in 92% yield (0.206 g).
$\mathbf{R}_{\mathbf{f}}: 0.7\left(\mathrm{CHCl}_{3}\right) ; \mathbf{U V}-\mathbf{v i s i b l e}\left(\mathbf{C H C l}_{3}\right), \boldsymbol{\lambda}_{\text {abs }} / \mathbf{n m}(\log \boldsymbol{\varepsilon}): 422$ (5.27), 518 (4.78), 556 (4.76), 592 (4.74), 649 (4.74); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta} \mathbf{~ p p m : ~} 8.85$ (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta \mathrm{H}$), $8.80(\mathrm{~m}, 6 \mathrm{H}, \beta \mathrm{H}), 8.01$ (m, 6H, ArH), 7.93 (d, J=7.8 Hz, 2H, ArH), 7.71 (m, 3H, ArH), 6.97 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 1.44 ($\mathrm{s}, 54 \mathrm{H}, t$-butyl), -2.76 (br.s., $2 \mathrm{H},-\mathrm{NH}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z ,}$ Chloroform-d) $\boldsymbol{\delta} \mathbf{p p m}: 148.7,141.4,137.2,135.6,129.8,129.7,126.8,121.0,120.9,113.5$, 110.1, 35.1, 31.8; ESI-MS: calculated $965.6335\left(\mathrm{C}_{67} \mathrm{H}_{77} \mathrm{~N}_{5}\right)$, observed $966.6408(\mathrm{M}+\mathrm{H})^{+}$.

5-(4-azidophenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrin (6)

Porphyrin $2(0.206 \mathrm{~g}, 0.21 \mathrm{mmoles})$ was dissolved in TFA (3.36 ml) and cooled to $0{ }^{\circ} \mathrm{C}$ in ice bath. Sodium nitrite ($29.44 \mathrm{mg}, 0.48 \mathrm{mmoles}$) was dissolved in 1 ml of water and added to the mixture, which was then stirred for 30 min at $0^{\circ} \mathrm{C}$. Sodium azide ($36.71 \mathrm{mg}, 0.64 \mathrm{mmoles}$) was dissolved in 1 ml of water and added to the reaction mixture. After the reaction was stirred in ice for 1 h , cold water was added to the flask. The crude mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was washed with water until it turned purple. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and dried. The residue was chromatographed on silica gel using with 3:7 ratio chloroform/petroleum ether as eluent, and the desired product was obtained after evaporation in 92 \% yield (0.194 g).
$\mathbf{R}_{\mathbf{f}}: 0.6\left(60 \%\right.$ Pet. Ether : $\left.\mathrm{CHCl}_{3}\right) ; \mathbf{U V}$-visible ($\mathbf{C H C l}_{\mathbf{3}}$), $\boldsymbol{\lambda}_{\text {abs }} / \mathbf{n m}(\log \boldsymbol{\varepsilon}): 422$ (5.37), 518 (4.61), 554 (4.43), 592 (4.20), 647 (4.11); ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \boldsymbol{\delta} \mathbf{~ p p m : ~ 8 . 8 2 - 8 . 7 5 ~ (m , ~}$ $8 \mathrm{H}, \beta \mathrm{H}), 8.14(\mathrm{~d}, J=7.48 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.00(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.72(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.45(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 1.45 ($\mathrm{s}, 54 \mathrm{H}, t$-butyl), -2.78 (br.s., $2 \mathrm{H},-\mathrm{NH}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, Chloroform-d) $\boldsymbol{\delta} \mathbf{p p m}: 148.7,141.1,138.1,135.8,129.8,129.5,126.8,121.6,120.5,113.6$,
109.6., 35.2, 31.7; ESI-MS: calculated: $991.6240\left(\mathrm{C}_{68} \mathrm{H}_{77} \mathrm{~N}_{7}\right)$, observed $992.6313(\mathrm{M}+\mathrm{H})^{+}$; FT IR ($\mathbf{c m}^{-1}$): 2120 (azide).

Characterization of synthesized compounds

Figure S1: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 5-(4-ethynylphenyl)-10,15,20-tris(3,5-di-tertbutylphenyl)porphyrin (1) in Chloroform-d.

Figure S2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 2-[5-(4-phenyl)-10,15,20-tris(3,5-di-tertbutylphenyl)porphyrinato zincl-4-(1'-pyridyl)-1,2,3-triazole (2-Zn) in Chloroform-d.

Figure S3: MALDI of 2-[5-(4-phenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinato zinc]-4-(1'-pyridyl)-1,2,3-triazole (2-Zn)

Figure S4: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 2-[5-(4-phenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrin]-4-(1'-pyridyl)-1,2,3-triazole (2) in Chloroform-d.

Figure S5: MALDI of 2-[5-(4-phenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrin]-4-(1'-pyridyl)-1,2,3-triazole (2).

Figure S6: ${ }^{1} \mathrm{H}$ NMR spectrum of 2-[5-(4-phenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinyl]-1H-1,2,3-triazol-1-yl-pyridine-2,2'-bispyridine ruthenium (II) chloride (3) in Methanol-d.

Fgure S7: MALDI of 2-[5-(4-phenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinyl]-1H-1,2,3-triazol-1-yl-pyridine-2,2'-bispyridine ruthenium (II) chloride (3)

Figure S8: ${ }^{1}$ H NMR spectrum of 2-[5-(4-phenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinato zincl-1H-1,2,3-triazol-1-yl-pyridine-2,2'-bispyridine ruthenium (II) chloride (3-Zn) in Methanol-d.

Figure S9: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 5-(4-acetamidophenyl)-10,15,20-tris(3,5-di-tertbutylphenyl)porphyrin (4) in Chloroform- d.

Figure S10: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 5-(4-aminopheny) $\mathbf{~ - 1 0 , 1 5 , 2 0 - t r i s (3 , 5 - d i - t e r t - ~}$ butylphenyl)porphyrin (5) in Chloroform- d.

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of 5-(4-azidophenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrin (6) in Chloroform-d.

Figure S12: ${ }^{1} \mathrm{H}$ NMR spectrum of 2-[5-(1-phenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinato zincl-1,2,3-triazol-4-yl pyridine (7-Zn) in Chloroform-d.

Figure S13: MALDI TOF spectrum of 2-[5-(1-phenyl)-10,15,20-tris(3,5-di-tertbutylphenyl)porphyrinato zinc]-1,2,3-triazol-4-yl pyridine (7-Zn)

Figure S14: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 2-[5-(1-phenyl)-10,15,20-tris(3,5-di-tertbutyl)phenylporphyrinato zincl-1,2,3-triazol-4-yl pyridine (7) in Chloroform-d.

MFE MS Spectrum

MFE MS Zoomed Spectrum

MS Spectrum Peak List

$\boldsymbol{m} / \boldsymbol{z}$	z	Abund	Ion
548.3394	2	32653.92	$(\mathrm{M}+2 \mathrm{H})+2$
548.8401	2	26233.76	$(\mathrm{M}+2 \mathrm{H})+2$
549.3423	2	11628.45	$(\mathrm{M}+2 \mathrm{H})+2$
549.8445	2	2898	$(\mathrm{M}+2 \mathrm{H})+2$
1095.6715	1	477672.56	$(\mathrm{M}+\mathrm{H})+$

Figure S15: ESI-MS spectrum of 2-[5-(1-phenyl)-10,15,20-tris(3,5-di-tert-butyl)phenylporphyrinato zinc|-1,2,3-triazol-4-yl pyridine (7)

Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum of 2-[5-(1-phenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinato zincl-1H-1,2,3-triazol-4-yl-pyridine 2,2'-bispyridine ruthenium(II) chloride (8-Zn) in Methanol-d.

Figure S17: ${ }^{1} \mathrm{H}$ NMR spectrum of 2-[5-(1-phenyl)-10,15,20-tris(3,5-di-tert-butyl)phenylporphyrinyl]-1H-1,2,3-triazol-4-yl-pyridine 2,2'-bispyridine ruthenium (II) chloride 8 in Methanol-d.

Figure S18: MALDI TOF and simulation pattern of 2-[5-(1-phenyl)-10,15,20-tris(3,5-di-tert-butyl)phenylporphyrinyll-1H-1,2,3-triazol-4-yl-pyridine 2,2'-bispyridine ruthenium (II) chloride (8)

Figure S19: UV-visible spectra of 2-[5-(1-phenyl)-10,15,20-tris(3,5-di-tert-butyl)phenylporphyrinato zincl-1,2,3-triazol-4-yl pyridine (7) and its ruthenium complex (8)

Figure S20: Steady state emission of $8-\mathbf{Z n}$ with excitation of Soret band and Q band in $\mathbf{C H C l}_{3}\left(5 \times 10^{-}\right.$ ${ }^{6} \mathrm{M}$).

Figure S21: Steady state emission of 8 with excitation of Soret band and Q band in $\mathbf{C H C l}_{3}\left(1.7 \times 10^{-6}\right.$ M).

Figure S22: Steady state emission of 8-Zn with excitation of i) Soret band, ii) Q band, iii) MLCT band in $\mathbf{C H C l}_{3}\left(\mathbf{5} \times \mathbf{1 0}^{-6} \mathbf{M}\right)$

Figure S23: Steady state emission of 8 with excitation of i) Soret band, ii) \mathbf{Q} band, iii) MLCT band in $\mathbf{C H C l}_{3}\left(5 \times 10^{-6} \mathrm{M}\right)$

Figure S24: Steady state emission of $\mathbf{2 , 3}$ with excitation of a) Soret band and b) \mathbf{Q} band in $\mathbf{C H C l}_{\mathbf{3}}$ $\left(5 \times 10^{-6} \mathrm{M}\right)$

Figure S25: Steady state emission of $\mathbf{3}$ with excitation of \mathbf{Q} band in $\mathrm{CHCl}_{3}\left(5 \times 10^{-6} \mathbf{M}\right)$

Figure S26: Cyclic voltammogram (CV) of $7-\mathrm{Zn}, 8-\mathrm{Zn}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with a scan rate of $50 \mathrm{mV} / \mathrm{s}(0.1 \mathrm{M}$ TBAPF $_{6}$).

Figure S27: Cyclic voltammogram (CV) of 8, 3 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with a scan rate of $50 \mathrm{mV} / \mathrm{s}(0.1 \mathrm{M}$ TBAPF $_{6}$).

Figure S28: ${ }^{1} \mathrm{H}$ NMR spectral changes of 2-[5-(1-phenyl)-10,15,20-tris(3,5-di-tertbutylphenyl)porphyrinato zinc]-1,2,3-triazol-4-yl)pyridine (7-Zn) a) in $\mathrm{CDCl}_{3} \mathrm{~b}$) in Chloroform-d: Methanol-d (1:1).
${ }^{1}$ Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Mixed phosphine 2,2'-bipyridine complexes of ruthenium, Inorg. Chem., 1978, 17, 3334-3341.

