Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Information

Long chain branching hydrogel with ultrahigh tensibility and high strength by grafting from via photo-induced polymerization

Shuangfei Xiang, Ting Li, Yang Wang, Piming Ma, Mingqing Chen, Weifu Dong*

The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of

Chemical and Material Engineering, Jiangnan University, Lihu Road 1800, Wuxi 214122,

China

E-mail: wfdong@jiangnan.edu.cn

Fax: +86 510 85917763

Tel: +86 510 85917090

Tensile loading-unloading test

Six successive tensile loading/unloading cycles with maximum strain of 500% were tested for LCB-2M, LCB-4M, LCB-6M and LCB-8M (Figure S1). The first tensile hysteresis loop was calculated from loading/unloading cycles (Figure S2). When the concentration of AAm was 2 mol·L⁻¹, the tensile hysteresis energy was 208.5±11.3 KJ·m⁻³. With increasing the concentration of AAm to 8 mol·L⁻¹, the tensile hysteresis energy was improved to 293.4±15.1 KJ·m⁻³. It was obvious the tensile hysteresis energy enhanced with increasing the content of AAm. The results were similar to the compressive loading-unloading cycles.

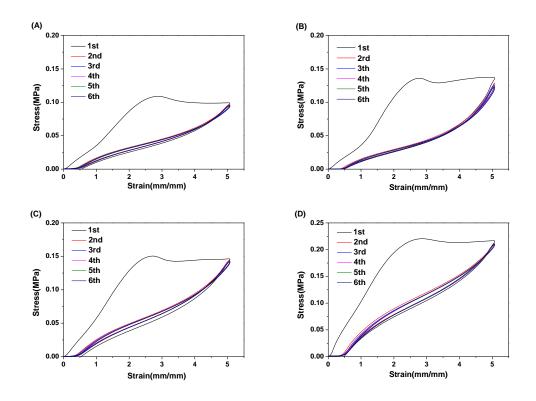


Figure S1. Loading/unloading cycles with maximum tensile strain of 500%. LCB-2M(A), LCB-4M(B), LCB-6M(C) and LCB-8M(D).

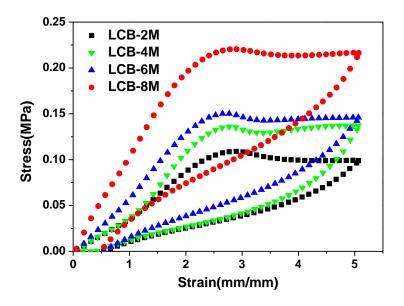


Figure S2. First loading/unloading cycles of LCB gel with maximum tensile strain of 500%.