Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Materials

Two Conformers of a Tyrosine Kinase Inhibitor (AG-1478) Disclosed Using Simulated UV-Vis Absorption Spectroscopy

Muhammad Khattab^a, Subhojyoti Chatterjee^b, Andrew H. A. Clayton^{a*}

and Feng Wang^{b*}

^aCentre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia

^bMolecular Model Discovery Laboratory, Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia

*Corresponding author: <u>fwang@swin.edu.au</u>

aclayton@swin.edu.au

Parameters	AG-1478B	AG-1478A	Parameters	AG-1478B	AG-1478A
Bond length (Å)			Bond angle (°)		
$C_{(1)}-C_{(2)}$	1.3750	1.3748	$C_{(2)}-C_{(1)}-C_{(6)}$	119.64	119.83
$C_{(1)}-C_{(6)}$	1.4365	1.4402	$C_{(2)}-C_{(1)}-O_{(27)}$	125.31	125.23
$C_{(1)}-O_{(27)}$	1.3510	1.3498	$C_{(6)}-C_{(1)}-O_{(27)}$	115.04	114.93
$C_{(2)}-C_{(3)}$	1.4166	1.4176	$C_{(1)}-C_{(2)}-C_{(3)}$	121.16	120.95
$C_{(2)}-H_{(7)}$	1.0816	1.0815	$C_{(1)}-C_{(2)}-H_{(7)}$	121.96	122.02
$C_{(3)}-C_{(4)}$	1.4163	1.4216	$C_{(3)}-C_{(2)}-H_{(7)}$	116.88	117.02
$C_{(3)}-N_{(13)}$	1.3666	1.3627	$C_{(2)}-C_{(3)}-C_{(4)}$	119.38	119.21
$C_{(4)}-C_{(5)}$	1.4208	1.4209	$C_{(2)}-C_{(3)}-N_{(13)}$	118.26	118.51
$C_{(4)}-C_{(8)}$	1.4392	1.4269	$C_{(4)}-C_{(3)}-N_{(13)}$	122.36	122.25
$C_{(5)}$ - $C_{(6)}$	1.3766	1.3743	$C_{(3)}-C_{(4)}-C_{(5)}$	118.96	119.23
$C_{(5)}$ - $H_{(9)}$	1.0827	1.0795	$C_{(3)}-C_{(4)}-C_{(8)}$	115.34	115.18
$C_{(6)}$ - $O_{(28)}$	1.3555	1.3536	$C_{(5)}-C_{(4)}-C_{(8)}$	125.71	125.54
$C_{(8)}$ - $N_{(12)}$	1.3235	1.327	$C_{(4)}$ - $C_{(5)}$ - $C_{(6)}$	121.12	120.82
$C_{(8)}$ - $N_{(25)}$	1.3764	1.3928	$C_{(4)}-C_{(5)}-H_{(9)}$	120.74	119.32
$C_{(10)}$ - $H_{(11)}$	1.0870	1.0868	$C_{(6)}-C_{(5)}-H_{(9)}$	118.14	119.85
$C_{(10)}$ - $N_{(12)}$	1.3505	1.3479	$C_{(1)}-C_{(6)}-C_{(5)}$	119.73	119.85
$C_{(10)}$ - $N_{(13)}$	1.3101	1.3136	$C_{(1)}-C_{(6)}-O_{(28)}$	114.89	114.82
$C_{(14)}$ - $C_{(15)}$	1.406	1.4023	$C_{(5)}-C_{(6)}-O_{(28)}$	125.38	125.32
$C_{(14)}$ - $C_{(16)}$	1.4016	1.4005	$C_{(4)}-C_{(8)}-N_{(12)}$	121.30	121.57
$C_{(14)}$ - $N_{(25)}$	1.4059	1.4118	$C_{(4)}-C_{(8)}-N_{(25)}$	119.13	123.66
$C_{(15)}$ - $C_{(17)}$	1.3873	1.3896	$N_{(12)}$ - $C_{(8)}$ - $N_{(25)}$	119.57	114.59
$C_{(15)}$ - $H_{(18)}$	1.0869	1.0852	$H_{(11)}-C_{(10)}-N_{(12)}$	115.17	115.51
$C_{(16)}$ - $C_{(19)}$	1.3910	1.3904	$H_{(11)}-C_{(10)}-N_{(13)}$	116.99	117.08
C ₍₁₆₎ -H ₍₂₀₎	1.0776	1.0818	$N_{(12)}-C_{(10)}-N_{(13)}$	127.84	127.4
$C_{(17)}$ - $C_{(21)}$	1.3942	1.3945	$C_{(8)}$ - $N_{(12)}$ - $C_{(10)}$	117.43	117.42
$C_{(17)}$ - $H_{(22)}$	1.0849	1.085	$C_{(3)}$ - $N_{(13)}$ - $C_{(10)}$	115.74	115.93
$C_{(19)}$ - $C_{(21)}$	1.3894	1.3905	$C_{(15)}$ - $C_{(14)}$ - $C_{(16)}$	119.14	119.27
$C_{(19)}$ - $Cl_{(24)}$	1.7611	1.7602	$C_{(15)}-C_{(14)}-N_{(25)}$	116.44	118.1
$C_{(21)}$ - $H_{(23)}$	1.0827	1.0828	$C_{(16)}$ - $C_{(14)}$ - $N_{(25)}$	124.42	122.6
N ₍₂₅₎ -H ₍₂₆₎	1.0061	1.0126	$C_{(14)}$ - $C_{(15)}$ - $C_{(17)}$	120.66	120.27
$O_{(27)}-C_{(33)}$	1.4231	1.4228	$C_{(14)}-C_{(15)}-H_{(18)}$	119.80	119.39
$O_{(28)}-C_{(29)}$	1.4185	1.4214	$C_{(17)}$ - $C_{(15)}$ - $H_{(18)}$	119.54	120.34
$C_{(29)}$ - $H_{(30)}$	1.0881	1.0881	$C_{(14)}$ - $C_{(16)}$ - $C_{(19)}$	118.69	119.21
$C_{(29)}$ - $H_{(31)}$	1.0954	1.0943	$C_{(14)}-C_{(16)}-H_{(20)}$	120.14	120.85
$C_{(29)}$ - $H_{(32)}$	1.0954	1.0949	$C_{(19)}$ - $C_{(16)}$ - $H_{(20)}$	121.18	119.93
$C_{(33)}$ - $H_{(34)}$	1.0879	1.0879	$C_{(15)}-C_{(17)}-C_{(21)}$	120.81	120.97
C ₍₃₃₎ -H ₍₃₅₎	1.0941	1.0942	$C_{(15)}-C_{(17)}-H_{(22)}$	119.54	119.56
C ₍₃₃₎ -H ₍₃₆₎	1.0941	1.0942	$C_{(21)}-C_{(17)}-H_{(22)}$	119.65	119.46
Bond angle (°)			Dihedral angle (°)		
$C_{(16)}$ - $C_{(19)}$ - $C_{(21)}$	122.86	122.15	$C_{(4)}$ - $C_{(8)}$ - $N_{(12)}$ - $C_{(10)}$	0.00	-3.5
$C_{(16)}$ - $C_{(19)}$ - $Cl_{(24)}$	118.23	118.62	$N_{(25)}-C_{(8)}-N_{(12)}-C_{(10)}$	180.00	-178.93
$C_{(21)}$ - $C_{(19)}$ - $Cl_{(24)}$	118.91	119.22	$C_{(4)}$ - $C_{(8)}$ - $N_{(25)}$ - $C_{(14)}$	-180.00	49.19
$C_{(17)}$ - $C_{(21)}$ - $C_{(19)}$	117.84	118.1	$C_{(4)}-C_{(8)}-N_{(25)}-H_{(26)}$	0.02	-163.46
$C_{(17)}$ - $C_{(21)}$ - $H_{(23)}$	121.40	121.34	$N_{(12)}-C_{(8)}-N_{(25)}-C_{(14)}$	0.00	-135.49
$C_{(19)}$ - $C_{(21)}$ - $H_{(23)}$	120.76	120.57	N ₍₁₂₎ -C ₍₈₎ -N ₍₂₅₎ -H ₍₂₆₎	-179.97	11.86
$C_{(8)}$ - $N_{(25)}$ - $C_{(14)}$	131.92	128.12	$H_{(11)}-C_{(10)}-N_{(12)}-C_{(8)}$	180.00	179.72
C ₍₈₎ -N ₍₂₅₎ -H ₍₂₆₎	114.94	110.24	$N_{(13)}$ - $C_{(10)}$ - $N_{(12)}$ - $C_{(8)}$	0.00	-1.46
$C_{(14)}$ - $N_{(25)}$ - $H_{(26)}$	113.14	114.08	$H_{(11)}-C_{(10)}-N_{(13)}-C_{(3)}$	-180.00	-177.46
$C_{(1)}$ - $O_{(27)}$ - $C_{(33)}$	118.26	118.37	$N_{(12)}$ - $C_{(10)}$ - $N_{(13)}$ - $C_{(3)}$	0.01	3.73
$C_{(6)}$ - $O_{(28)}$ - $C_{(29)}$	118.66	118.38	$C_{(16)}$ - $C_{(14)}$ - $C_{(15)}$ - $C_{(17)}$	-0.01	-0.14
$O_{(28)}$ - $C_{(29)}$ - $H_{(30)}$	105.76	105.65	$C_{(16)}$ - $C_{(14)}$ - $C_{(15)}$ - $H_{(18)}$	179.99	-179.61
$O_{(28)}$ - $C_{(29)}$ - $H_{(31)}$	111.36	111.27	$N_{(25)}$ - $C_{(14)}$ - $C_{(15)}$ - $C_{(17)}$	179.99	-178.25
$O_{(28)}$ - $C_{(29)}$ - $H_{(32)}$	111.36	111.27	$N_{(25)}$ - $C_{(14)}$ - $C_{(15)}$ - $H_{(18)}$	-0.02	2.28
$H_{(30)}$ - $C_{(29)}$ - $H_{(31)}$	109.29	109.54	$C_{(15)}$ - $C_{(14)}$ - $C_{(16)}$ - $C_{(19)}$	0.00	1.34

Table S1: Molecular parameters of AG-1478 obtained by geometry reoptimization using the B3LYP/6-311+G* model of thethree local minimum structures of PES at $6-311G^*$

Dihedral angle (°)

$H_{(30)}$ - $C_{(29)}$ - $H_{(32)}$	109.29	109.42	$C_{(15)}$ - $C_{(14)}$ - $C_{(16)}$ - $H_{(20)}$	-179.99	-177.95
$H_{(31)}-C_{(29)}-H_{(32)}$	109.68	109.6	$N_{(25)}-C_{(14)}-C_{(16)}-C_{(19)}$	-179.99	179.36
$O_{(27)}-C_{(33)}-H_{(34)}$	105.63	105.63	$N_{(25)}-C_{(14)}-C_{(16)}-H_{(20)}$	0.02	0.07
$O_{(27)}-C_{(33)}-H_{(35)}$	111.17	111.19	$C_{(15)}-C_{(14)}-N_{(25)}-C_{(8)}$	179.94	-167.44
$O_{(27)}-C_{(33)}-H_{(36)}$	111.17	111.17	$C_{(15)}-C_{(14)}-N_{(25)}-H_{(26)}$	-0.08	46.23
$H_{(34)}-C_{(33)}-H_{(35)}$	109.60	109.57	$C_{(16)}-C_{(14)}-N_{(25)}-C_{(8)}$	-0.07	14.52
$H_{(34)}-C_{(33)}-H_{(36)}$	109.60	109.6	$C_{(16)}-C_{(14)}-N_{(25)}-H_{(26)}$	179.91	-131.82
$H_{(35)}-C_{(33)}-H_{(36)}$	109.59	109.59	$C_{(14)}-C_{(15)}-C_{(17)}-C_{(21)}$	0.00	-1.05
$C_{(6)}-C_{(1)}-C_{(2)}-C_{(3)}$	0.00	0.68	$C_{(14)}-C_{(15)}-C_{(17)}-H_{(22)}$	-180.00	179.8
$C_{(6)}-C_{(1)}-C_{(2)}-H_{(7)}$	-180.00	-178.04	$H_{(18)}-C_{(15)}-C_{(17)}-C_{(21)}$	-179.99	178.41
$O_{(27)}-C_{(1)}-C_{(2)}-C_{(3)}$	180.00	179.77	$H_{(18)}-C_{(15)}-C_{(17)}-H_{(22)}$	0.00	-0.74
$O_{(27)}-C_{(1)}-C_{(2)}-C_{(7)}$	0.00	1.04	$C_{(14)}-C_{(16)}-C_{(19)}-C_{(21)}$	0.00	-1.4
$C_{(2)}-C_{(1)}-C_{(6)}-C_{(5)}$	0.00	-1.72	$C_{(14)}-C_{(16)}-C_{(19)}-Cl_{(24)}$	180.00	179.44
$C_{(2)}-C_{(1)}-C_{(6)}-O_{(28)}$	180.00	178.03	$H_{(20)}-C_{(16)}-C_{(19)}-C_{(21)}$	179.99	177.89
$O_{(27)}-C_{(1)}-C_{(6)}-C_{(5)}$	-180.00	179.1	$H_{(20)}-C_{(16)}-C_{(19)}-Cl_{(24)}$	-0.01	-1.26
$O_{(27)}-C_{(1)}-C_{(6)}-O_{(28)}$	0.00	-1.15	$C_{(15)}-C_{(17)}-C_{(21)}-C_{(19)}$	0.00	1.01
$C_{(2)}-C_{(1)}-O_{(27)}-C_{(33)}$	0.01	0.79	$C_{(15)}-C_{(17)}-C_{(21)}-H_{(23)}$	180.00	-179.16
$C_{(6)}-C_{(1)}-O_{(27)}-C_{(33)}$	-179.99	179.91	$H_{(22)}-C_{(17)}-C_{(21)}-C_{(19)}$	-180.00	-179.84
$C_{(1)}-C_{(2)}-C_{(3)}-C_{(4)}$	0.00	2	$H_{(22)}-C_{(17)}-C_{(21)}-H_{(23)}$	0.00	-0.01
$C_{(1)}-C_{(2)}-C_{(3)}-N_{(13)}$	-179.99	-176.02	$C_{(16)}-C_{(19)}-C_{(21)}-C_{(17)}$	0.00	0.23
$H_{(7)}-C_{(2)}-C_{(3)}-C_{(4)}$	-180.00	-179.22	$C_{(16)}-C_{(19)}-C_{(21)}-H_{(23)}$	180.00	-179.6
$H_{(7)}-C_{(2)}-C_{(3)}-N_{(13)}$	0.00	2.77	$Cl_{(24)}-C_{(19)}-C_{(21)}-C_{(17)}$	180.00	179.38
$C_{(2)}-C_{(3)}-C_{(4)}-C_{(5)}$	-0.01	-3.63	$Cl_{(24)}-C_{(19)}-C_{(21)}-H_{(23)}$	0.00	-0.45
$C_{(2)}-C_{(3)}-C_{(4)}-C_{(8)}$	180.00	178.89	$C_{(1)}-O_{(27)}-C_{(33)}-H_{(34)}$	179.99	179.39
$N_{(13)}$ - $C_{(3)}$ - $C_{(4)}$ - $C_{(5)}$	179.99	174.3	$C_{(1)}$ - $O_{(27)}$ - $C_{(33)}$ - $H_{(35)}$	-61.20	-61.83
$N_{(13)}$ - $C_{(3)}$ - $C_{(4)}$ - $C_{(8)}$	0.00	-3.18	$C_{(1)}$ - $O_{(27)}$ - $C_{(33)}$ - $H_{(36)}$	61.18	60.57
$C_{(2)}-C_{(3)}-N_{(13)}-C_{(10)}$	180.00	176.84	$C_{(6)}$ - $O_{(28)}$ - $C_{(29)}$ - $H_{(30)}$	-179.99	-178.94
$C_{(4)}$ - $C_{(3)}$ - $N_{(13)}$ - $C_{(10)}$	0.00	-1.11	$C_{(6)}$ - $O_{(28)}$ - $C_{(29)}$ - $H_{(31)}$	-61.37	-60.14
$C_{(3)}$ - $C_{(4)}$ - $C_{(5)}$ - $C_{(6)}$	0.00	2.64	$C_{(6)}$ - $O_{(28)}$ - $C_{(29)}$ - $H_{(32)}$	61.39	62.4
$C_{(3)}$ - $C_{(4)}$ - $C_{(5)}$ - $H_{(9)}$	-179.99	-176.65			
$C_{(8)}$ - $C_{(4)}$ - $C_{(5)}$ - $C_{(6)}$	-180.00	179.84	<r²> (a.u.)</r²>	10395.1155	7611.6811
$C_{(8)}$ - $C_{(4)}$ - $C_{(5)}$ - $H_{(9)}$	0.01	0.55	μ (D)	5.8297	3.0792
$C_{(3)}$ - $C_{(4)}$ - $C_{(8)}$ - $N_{(12)}$	0.01	5.56	<i>E</i> _h (a.u.)	-1393.2768	-1393.2744
$C_{(3)}$ - $C_{(4)}$ - $C_{(8)}$ - $N_{(25)}$	-179.99	-179.43	ZPE (kcal.mol ⁻¹)	173.5149	173.5958
$C_{(5)}-C_{(4)}-C_{(8)}-N_{(12)}$	-179.99	-171.74	$E_{\rm h}$ + ZPE (a.u.)	-1393.0003	-1392.9978
$C_{(5)}$ - $C_{(4)}$ - $C_{(8)}$ - $N_{(25)}$	0.01	3.27	HOMO-LUMO gap (eV)	4.25	4.26
$C_{(4)}$ - $C_{(5)}$ - $C_{(6)}$ - $C_{(1)}$	0.00	0.03	Rot. Const. (GHz) A	0.5882	0.3470
$C_{(4)}$ - $C_{(5)}$ - $C_{(6)}$ - $O_{(28)}$	180.00	-179.69	В	0.1126	0.1855
$H_{(9)}$ - $C_{(5)}$ - $C_{(6)}$ - $C_{(1)}$	179.99	179.31	С	0.0946	0.1447
H ₍₉₎ -C ₍₅₎ -C ₍₆₎ -O ₍₂₈₎	-0.01	-0.41			
$C_{(1)}$ - $C_{(6)}$ - $O_{(28)}$ - $C_{(29)}$	180.00	179.08			
$C_{(5)}$ - $C_{(6)}$ - $O_{(28)}$ - $C_{(29)}$	0.00	-1.18			

Figure S1: Atomic charge analysis of heavy atoms of AG-1478B and AG-1478A using Natural Bond Order (NBO) analysis at the B3LYP/6-311+G* level of theory.