Electronic Supplementary Information (ESI)

Effect of N ancillary ligands on the structure, nuclearity and magnetic behavior of $\mathrm{Cu}(\mathrm{II})$-pyrazolecarboxylate complexes

Meiling Cheng, ${ }^{,}$Lin Sun, ${ }^{a}$ Wei Han, ${ }^{a}$ Shen Wang, ${ }^{a}$ Qi Liu, ${ }^{* a b}$ Xiaoqiang Sun, ${ }^{a}$ Haitao Xi* ${ }^{* a}$
${ }^{a}$ School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China

[^0]
Table of Contents

Figure S2 The 3D supramolecular structure of complex 1 viewing along the a-axis. Hydrogen bonds are indicated by dash lines, only hydrogen atoms involved in the hydrogen bonds are
\qquad
Figure S3. The 2D layer of the complex 2. Only hydrogen atoms involved in the hydrogen bonds are shown. Hydrogen bonds are indicated by dashed lines.S4

Figure S4. The 3D network of 2. Only hydrogen atoms involved in the hydrogen bonds are shown. Hydrogen bonds are indicated by dashed lines, the dicopper units are shown in the same color. $\cdot \mathrm{S} 4$ Figure S5. The 3D network of $\mathbf{3}$ view along the a-axis. Only hydrogen atoms involved in the hydrogen bonds are shown. Hydrogen bonds are indicated by dashed lines, the 2D layers are
 Figure S6 The boat conformational 9-membered ring in $4 . \cdots \ldots \ldots$ Figure S7 The $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and intramolecular $\pi \cdots \pi$ interactions in 4. Only hydrogen atoms involved in $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions are shown, $\pi \cdots \pi$ interactions and $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions are indicated by dashed lines.S5
Figure S8 The PXRD spectra of $\mathbf{1 - 4 .}$ S5
Figure S9 The TG-traces for complexes $\mathbf{1 - 4}$. -S6
Table S1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathbf{1}$. -S6
Table S2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of hydrogen bonds in $\mathbf{1}$ S7
Table S3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in 2 S7
Table S4. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of hydrogen bonds in 2. S7
Table S5. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in 3. -S8
Table S6. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of hydrogen bonds in 3 S8
Table S7. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in 4. -S9
Table S8. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in $4 . \cdots \mathrm{S} 10$

Figure S1 The infrared spectra of complexes 1-4.

Figure S2 The 3D supramolecular structure of complex $\mathbf{1}$ viewing along the a-axis. Hydrogen bonds are indicated by dash lines, only hydrogen atoms involved in the hydrogen bonds are shown.

Figure S3. The 2D layer of the complex 2. Only hydrogen atoms involved in the hydrogen bonds are shown. Hydrogen bonds are indicated by dashed lines.

Figure S4. The 3D network of 2. Only hydrogen atoms involved in the hydrogen bonds are shown. Hydrogen bonds are indicated by dashed lines, the dicopper units are shown in the same color.

Figure S5. The 3D network of $\mathbf{3}$ view along the a-axis. Only hydrogen atoms involved in the hydrogen bonds are shown. Hydrogen bonds are indicated by dashed lines, the 2D layers are shown in the same color.

Figure S6 The boat conformational 9-membered ring in 4.

Figure S7 The $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and intramolecular $\pi^{\cdots} \pi$ interactions in 4. Only hydrogen atoms involved in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are shown, $\pi \cdots \pi$ interactions and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are indicated by dashed lines.

Figure S8 The PXRD spectra of $\mathbf{1 - 4 .}$

Figure S9 The TG-traces for complexes 1-4.

Table S1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathbf{1}$.

$\mathrm{Cu} 1-\mathrm{N} 3$	$2.0111(15)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0266(13)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$2.3840(14)$		
N3-Cu1-N1	$90.35(6)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1 \mathrm{~A}$	$89.66(6)$
N3A-Cu1-N1	$89.66(6)$	$\mathrm{N} 3 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{N} 1 \mathrm{~A}$	$92.01(6)$
N3-Cu1-O1	$92.01(6)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{O} 1 \mathrm{~A}$	$87.99(6)$
N1-Cu1-O1	$74.16(5)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1 \mathrm{~A}$	$105.84(5)$
O1-Cu1-N3A	$87.99(6)$	$\mathrm{O} 1 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{N} 3 \mathrm{~A}$	$92.01(6)$
O1-Cu1-N1A	$105.84(5)$	$\mathrm{O} 1 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{N} 1 \mathrm{~A}$	$74.16(5)$

Symmetry codes: A: $-x,-y,-z$.

Table S2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of hydrogen bonds in $\mathbf{1}$.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} / \AA$	$\mathrm{H} \cdots \mathrm{A} / \AA$	$\mathrm{D} \cdots \mathrm{A} / \AA$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A} /\left(^{\circ}\right)$
$\mathrm{N}(2)-\mathrm{H}(2) \cdots \mathrm{O}(3 \mathrm{~B})$	0.86	1.89	$2.742(2)$	167
$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{X}) \cdots \mathrm{O}(2)$	0.93	1.79	$2.702(2)$	163
$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{Y}) \cdots \mathrm{O}(1 \mathrm{C})$	0.83	1.90	$2.706(2)$	164
$\mathrm{~N}(4)-\mathrm{H}(4) \cdots \mathrm{O}(2 \mathrm{D})$	0.98	1.83	$2.738(3)$	151
$\mathrm{C}(6)-\mathrm{H}(6) \cdots \mathrm{O}(3 \mathrm{D})$	0.93	2.55	$3.295(2)$	137

Symmetry codes: B: $1 / 2-x,-1 / 2-y, 1 / 2-z ; \mathrm{C}: 1 / 2+x, 1 / 2-y, 1 / 2+z ; \mathrm{D}:-1 / 2+x,-1 / 2+y$, $1 / 2-z$.

Table S3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in 2.

$\mathrm{Cu} 1-\mathrm{N} 2 \mathrm{~A}$	$1.928(3)$	$\mathrm{Cu} 1-\mathrm{O} 3$	$2.082(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.991(3)$	$\mathrm{Cu} 1-\mathrm{O} 4$	$2.118(3)$
$\mathrm{Cu}-\mathrm{O} 1$	$1.976(2)$		
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{O} 1$	$177.33(10)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$122.96(12)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{N} 1$	$100.62(11)$	$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{O} 4$	$95.04(11)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$82.00(10)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4$	$83.26(10)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{O} 3$	$95.27(11)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 4$	$115.82(12)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$83.68(11)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 4$	$116.79(13)$

Symmetry code: A: $1-x, 2-y, 1-z$.

Table S4. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of hydrogen bonds in 2.

D-H \cdots A	D -H	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{X} \cdots \mathrm{O} 2 \mathrm{~B}$	0.81	2.03	$2.824(4)$	168
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{Y} \cdots \mathrm{O} 2 \mathrm{C}$	0.85	1.97	$2.797(4)$	162
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{X} \cdots \mathrm{O} 1 \mathrm{D}$	0.90	1.95	$2.814(4)$	161
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{Y} \cdots \mathrm{O} 2 \mathrm{E}$	0.88	1.99	$2.755(4)$	144

Symmetry codes: B: $1 / 2-x, 1 / 2+y, 1 / 2-z ; \mathrm{C}: x, 1+y, z ; \mathrm{D}: 1-x, y, 1 / 2-z ; \mathrm{E}: 1 / 2+x, 1 / 2+y$, z.

Table S5. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in 3.

$\mathrm{Cu} 1-\mathrm{N} 2 \mathrm{~A}$	$1.978(3)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$1.994(3)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$2.018(3)$	$\mathrm{Cu} 1-\mathrm{N} 3$	$2.052(3)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$2.217(3)$		
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{N} 1$	$98.70(13)$	$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{O} 1$	$177.69(13)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$81.46(13)$	$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{N} 3$	$94.46(14)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$141.78(14)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$86.78(13)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{O} 3$	$93.30(14)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$109.52(15)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$84.48(13)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 3$	$105.31(15)$

Symmetry codes: A: $-x+2,-y,-z$.

Table S6. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of hydrogen bonds in 3.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} / \AA$	$\mathrm{H} \cdots \mathrm{A} / \AA$	$\mathrm{D} \cdots \mathrm{A} / \AA$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A} /\left(^{\circ}\right)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{X} \cdots \mathrm{O} 2 \mathrm{~B}$	0.79	2.06	$2.761(6)$	148
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{Y} \cdots \mathrm{O} 1 \mathrm{C}$	0.97	2.00	$2.879(5)$	149
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{Y} \cdots \mathrm{O} 2 \mathrm{C}$	0.97	2.55	$3.431(5)$	151

Symmetry codes: B: $1+x, y, z ; \mathrm{C} 2-x, 1-y,-z$.

Table S7. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in 4.

Cu1-N7	1.953(4)	$\mathrm{Cu} 1-\mathrm{N} 1$	2.030(4)
Cu1-N12	1.988(4)	$\mathrm{Cu} 1-\mathrm{N} 2$	2.208(4)
Cu1-O1	2.027(3)	Cu2-N9	1.959(4)
Cu2-N8	1.972(4)	Cu2-N4	2.013(4)
Cu2-N3	2.054(4)	Cu2-O3	2.286(3)
Cu3-N10	1.965(4)	Cu3-N5	2.011(4)
Cu3-N6	2.057(4)	Cu3-N11	2.073(4)
Cu3-O5	2.193(3)		
N7-Cu1-N12	96.09(17)	N9-Cu2-O3	78.04(15)
N7-Cu1-O1	81.85(16)	N8-Cu2-O3	112.97(15)
$\mathrm{N} 12-\mathrm{Cu} 1-\mathrm{O} 1$	148.76(17)	N4-Cu2-O3	90.11(15)
N7-Cu1-N1	171.59(18)	N9-Cu2-N8	94.94(17)
N12-Cu1-N1	91.33(17)	N3-Cu2-O3	89.75(15)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	89.75(17)	$\mathrm{N} 10-\mathrm{Cu} 3-\mathrm{N} 5$	170.93(18)
N7-Cu1-N2	101.77(18)	N10-Cu3-N6	91.48(17)
N12-Cu1-N2	117.97(18)	N5-Cu3-N6	79.76(18)
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$	92.78(17)	N10-Cu3-N11	95.34(16)
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$	78.07(18)	N5-Cu3-N11	93.24(17)
N9-Cu2-N4	166.73(17)	N6-Cu3-N11	145.42(17)
N8-Cu2-N4	95.20(17)	N10-Cu3-O5	92.11(16)
N9-Cu2-N3	92.84(17)	N5-Cu3-O5	92.64(17)
N8-Cu2-N3	157.05(16)	N6-Cu3-O5	136.39(16)
N4-Cu2-N3	81.01(17)	N11-Cu3-O5	77.28(15)

Table S8. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 4.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A} / \mathrm{Cg}$	D - H	H $\cdots \mathrm{A} / \mathrm{Cg}$	D $\cdots \mathrm{A} / \mathrm{Cg}$	D - H $\cdots \mathrm{A} / \mathrm{Cg}$
O7-H0BA \cdots O8F	0.85	2.08	2.855(6)	151
O7-H2BA $\cdots{ }^{-}$	0.85	1.98	2.752(5)	151
O8-H3BA \cdots O7D	0.83	2.24	2.855(6)	131
O8-H4BA \cdots - 3	0.83	1.94	2.776 (5)	175
O9-H5BA \cdots O6G	0.85	1.91	2.734(6)	163
O9-H6BA \cdots O4A	0.85	1.94	2.779(7)	168
O10-H8BA \cdots O4F	0.85	1.95	2.796(6)	173
O10-H7BA \cdots O ${ }^{\text {a }}$	0.85	2.07	2.908(7)	167
O11-H0CA \cdots O ${ }^{\text {a }}$	0.85	2.05	2.858(8)	157
O11-H9BA \cdots - ${ }^{\text {O6G }}$	0.85	1.98	2.820(7)	172
O12-H4CA \cdots O9E	0.85	1.88	2.704(9)	163
O12-H5CA \cdots O10	0.85	1.97	2.779(9)	160
O13-H13CA \cdots O14A	0.85	1.99	2.744(11)	148
O14-H14A \cdots O8C	0.81	2.13	2.921(10)	171
O14-H14B \cdots O11B	0.81	1.99	2.730 (10)	152
C5-H5 \cdots O4H	0.93	2.59	3.402(7)	146
C17-Hk \cdots O4I	0.93	2.42	3.325(6)	165
$\mathrm{C} 22-\mathrm{Ho} \cdots \mathrm{O} 12$	0.93	2.33	3.124(9)	143
C25-Hp \cdots O13J	0.93	2.54	3.196 (8)	128
C27-Hr \cdots O1J	0.93	2.57	3.486(7)	167
C27-Hr \cdots O2J	0.93	2.54	3.240(7)	133
C34-Hw $\cdots \mathrm{Cg} 7$	0.93	2.71	3.461(4)	138
C13-Hh ${ }^{-} \mathrm{Cg} 7$	0.93	2.81	3.525(5)	134

Symmetry codes: A: $1-\mathrm{x},-1 / 2+y, 1 / 2-z ; \mathrm{B}: 1-x, 1 / 2+y, 1 / 2-z ; \mathrm{C}:-1+x, y, z ; \mathrm{D}: 2-x, 1 / 2$
$+y, 1 / 2-z ; \mathrm{E}: 1+x, y, z ; \mathrm{F}: 2-x,-1 / 2+y, 1 / 2-z ; \mathrm{G}: x, 3 / 2-y, 1 / 2+z ; \mathrm{H}: x, 3 / 2-y,-1 / 2+z ; \mathrm{I}:$
$2-x, 2-y,-z ; \mathrm{J}: 1-x, 1-y,-z$.

[^0]: ${ }^{b}$ State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210093, P. R. China

