Electronic Supplementary Material (ESI) for New Journal of Chemistry, October 5, 2016.

Supporting Information

Cationic – exchange approach for conversion of two dimensional CdS to two dimensional Ag_2S nanowires with intermediate core-shell nanostructure towards supercapacitor application

Nikila Naira, Babasaheb R. Sankapala*

^aNano Materials and Device Laboratory, Department of Applied Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur-440010 (M.S) India.

New Journal of Chemistry, October 5, 2016

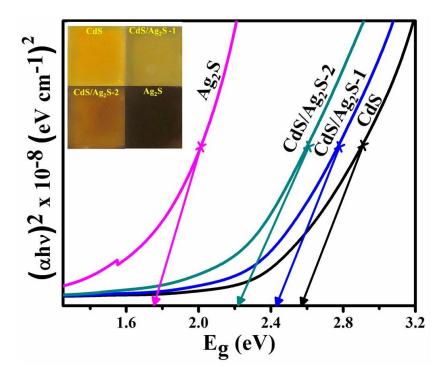


Figure S1 Plot of (αhυ)² vs. photon energy hυ of CdS, CdS/Ag₂S-1,CdS/Ag₂S-2 and Ag₂S

Figure S1 shows the band gap (E_g) of CdS, CdS/Ag₂S-1, CdS/Ag₂S-2 and Ag₂S samples. The value of E_g was obtained by extrapolating the straight portion of the line towards the X-axis. The E_g for CdS is reported to be 2.42 eV while for Ag₂S is ~ 1.7 eV [1-3]. In our case E_g seems to drift from 2.57 eV for CdS to 1.74 eV for Ag₂S, which implies that the NWs behave within quantum confined regime and it is a slow process [4].

References:

- [1] A. I. Kryukov, A. L. Stroyuk, N. N. Zin'chuk, A. V. Korzhak and S. Ya. Kuchmii, J. Mol. Catal A: Chem., 2004, 221, 209–221.
- [2] B. R. Sankapal, R.S. Mane and C.D. Lokhande, *Mater. Chem. Phys.*, 2000, **63**, 226±229.
- [3] L. Dloczik and R.Koenenkamp, J. Solid State Eletrochem, 2004, 8, 142–146.
- [4] L. Lin, Y. Wen, Y. Liang, N. Zhang and D. Xiao, Anal. Methods, 2013, 5, 457-464.