Electronic Supplementary Information

Fabrication of p-Cu₂O/n-Bi-WO₃ heterojunction thin films: optical and photoelectrochemical properties

Jin You Zheng, Chang Woo Kim, Amol Uttam Pawar and Young Soo Kang*

Korea Center for Artificial Photosynthesis (KCAP), Department of Chemistry, Sogang University, Seoul 121-742, South Korea. E-mail: yskang@sogang.ac.kr; Fax: (+82)-2-701-0967

Fig. S1 Photographs of a home-made cell for electrodeposition of Cu_2O films.

Fig. S2 (a and b) SEM images and (c) AFM image of the WO₃ thin film prepared by spin-coating of a PTA+PVA solution.

PTA+PVA solution^[1]: a solution was prepared by dissolving 1.5 g of H_2WO_4 and 0.5 g of poly(vinyl alcohol) (PVA) (Aldrich, 99+%) in 10 mL of 35 wt % H_2O_2 (Junsei, 35%).

The WO₃ was made by spin coating the PTA-PVA solution on FTO glass(1500 rpm for 20 s, Spin Coater ACE-200), followed by annealing at 500 °C for 2 h in air.

Fig. S3 The typical EDS spectrum and its corresponding W and Bi elements atomic% data of the Bi-WO₃ film on FTO glass.

Fig. S4 The transmittance differences (ΔT , $\Delta T = T_{FTO} - T_{sample}$) between the bare FTO and the samples; (1) Cu₂O-7, (2) Cu₂O-9, (3) Cu₂O-11, (4) Cu₂O-7/Bi-WO₃, (5) Cu₂O-9/Bi-WO₃ and (6) Cu₂O-11/Bi-WO₃.

Fig. S5 Low magnified SEM images of the bare FTO substrate and the electrodeposited Cu_2O films at different pHs. (a) FTO substrate, (b) Cu_2O -7, (c) Cu_2O -9, (d) Cu_2O -11.

Fig. S6 Low magnified SEM images of the electrodeposited Cu_2O films with stirring at different pHs. (a) Cu_2O -7s, (b) Cu_2O -11s.

Fig. S7 AFM 3D images of (a) Cu₂O-7, (b) Cu₂O-7s, (c) Cu₂O-11, (d) Cu₂O-11s. Average roughness (R_a) is the mean height as calculated over the entire measured length in the specific area (10 μ m × 10 μ m).

Fig. S8 XPS quantification reports of Cu_2O and Bi-WO₃ films by XPS survey spectra. The quantification is calculated according to the peak area.

Fig. S9 Stability measurements at +0.65 V of Bi-WO₃ film measured in 0.5 M Na₂SO₄ electrolyte solution under a chopped 1 sun illumination (black color) and a continue 1 sun illumination (red color).

Fig. S10 Cathodic photocurrents of (a) Cu_2O-7 , (b) Cu_2O-9 , (c) Cu_2O-11 , (d) $Cu_2O-7/Bi-WO_3$, (e) $Cu_2O-9/Bi-WO_3$ and (f) $Cu_2O-11/Bi-WO_3$, and (g) anodic photocurrent checking of Cu_2O-7 under the chopped 1 sun light illumination. The black arrows indicate the scanning direction.

Fig. S11 Photocurrents of (a) Cu_2O-7s and (b) $Cu_2O-7s/Bi-WO_3$ films obtained by electrodeposition with stirring condition.

References:

[1] J. Y. Zheng, G. Song, J. Hong, T. K. Van, A. U. Pawar, D. Y. Kim, C. W. Kim, Z. Haider and Y. S. Kang, *Cryst. Growth Des.*, 2014, **14**, 6057–6066.