Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Information for

Influence of Phase transition from Order to Disorder and Philip's Ionicity on Thermal Expansion Coefficient of Pyrochlore Type Compositions with Multivalent Environment

Ushakumari A. Renju, Padala Prabhakar Rao*, Divakaran S. Vaisakhan Thampi

Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum-695019, India

1. Table 1: Factor Group analysis for Pyrochlore structure	!
--	---

Modes	Distribution of degrees of freedom			Number of normal modes		
	A and B	X anion	O anion	Acoustic	Lattice	Selection
	cations D_{3d}			modes	modes	rules
	16c, 16d	C ₂ 48f	T _d 8a			
A1g	0	1	0	0	1	Raman
A2g	0	0	0	0	0	Inactive
Eg	0	1	0	0	1	Raman
T1g	0	2	0	0	2	Inactive
T2g	0	3	1	0	4	Raman
A1u	0	0	0	0	0	Inactive
A2u	2	1	0	0	3	Inactive
Eu	2	1	0	0	3	Inactive
T1u	4	3	1	1	7	Infrared
T2u	2	2	0	0	4	Inactive

The factor group analysis of pyrochlore structured compositions is shown in Table 1.

2. Fractional Ionicity Calculation: Equations

$$E_h^{\mu} = \frac{39.74}{\left(d^{\mu}\right)^{2.48}}$$

For any binary crystals $A_m B_n$ type compounds, the hetero polar C^{μ} parts can be calculated as follows:

$$C^{\mu} = 14.4b^{\mu} exp(-k_{s}^{\mu}r_{0}^{\mu}) \left[Z_{A}^{\mu} - \frac{n}{m} Z_{B}^{\mu} \right] \frac{1}{r_{0}^{\mu}}$$

Where n>m

$$C^{\mu} = 14.4b^{\mu} exp(-k_{s}^{\mu}r_{0}^{\mu}) \left[\frac{m}{n}Z_{A}^{\mu} - Z_{B}^{\mu}\right] \frac{1}{r_{0}^{\mu}}$$

Where m>n

 $b^{\mu} = b (N_C^{\mu})^2$

Where

$$k_s^{\mu} = \left(\frac{4k_f^{\mu}}{\prod a_B}\right)^{\frac{1}{2}}$$
$$k_f^{\mu} = \left(3\prod {}^2N_e^{\mu}\right)^{\frac{1}{3}}$$
$$r_0^{\mu} = \frac{d_{\mu}}{2}$$

 a_B is the Bohr radius (in Å) and d^{μ} is the bond distance (in Å). The units of E_h^{μ} and C^{μ} are in electron volts. The hetero polar energy gives a measure for the difference of screened coulomb potentials of the two atoms composing the bond or interaction of the point charges while the homo polar energy is a measure of the interaction of dipole and other multiple moments.¹ $exp_{[iii]}(-k_s^{\mu}r_0^{\mu})$ is the Thomas-Fermi screening factor. k_f^{μ} is the Fermi wave vector. b^{μ} is the correction factor proportional to the square of the average coordination number N_c^{μ} .

$$b^{\mu} = \beta \left(N_{c}^{\mu} \right)^{2}$$
$$N_{c}^{\mu} = \frac{m}{m+n} N_{CA}^{\mu} + \frac{n}{m+n} N_{CB}^{\mu}$$

 β is 0.089.² N_{CA}^{μ} is the coordination number of the μ type of bond for cation A, and N_{CB}^{μ} is the coordination number of the bond for anion B. N_{e}^{μ} is the number of valence electrons of the μ type of bond per cubic centimetre.

$$N_e^{\mu} = \frac{n_e^{\mu}}{\vartheta_b^{\mu}}$$
$$n_e^{\mu} = \frac{Z_A^{\mu}}{N_{CA}^{\mu}} + \frac{Z_B^{\mu}}{N_{CB}^{\mu}}$$

Where n_{e}^{μ} is the number of effective valence electrons per μ bond and ϑ_{b}^{μ} is the bond volume.

$$\vartheta_b^{\mu} = \frac{(d^{\mu})^3}{\sum_{\nu} (d^{\nu})^3 N_b^{\nu}}$$

 N_b^{ν} is the number of bonds per cubic centimetre, which is obtained from the crystal structure

- 1 Z. J. Wu and S. Y. Zhang, J. Phys. Chem. A, 1999, 103, 4270–4274.
- 2 B. F. Levine, J. Chem. Phys., 1973, 59, 1463.