Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Information

Carbon-doped freestanding TiO_2 nanotube arrays in dye-sensitized solar cells

Won-Yeop Rho, ^{a,b,+} Ho-Sub Kim, ^{b+} Hyung-Mo Kim, ^a Jung Sang Suh, ^b Bong-Hyun Jun^{a,*}

- a. Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea. E-mail: bjun@konkuk.ac.kr
- b. Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea.
- + These authors contributed equally to the work

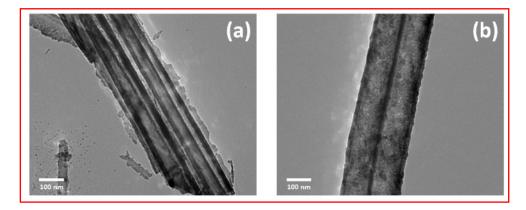


Fig. S1. TEM images of TiO₂ nanotube arrays (a) without carbon doping and (b) with carbon doping.

Fig. S1 shows TEM images of TiO_2 nanotube arrays with and without carbon doping. The channels of the undoped TiO_2 nanotube arrays were relatively clear and transparent, as shown in Fig. S1 a. Thus, the boundary lines and hollow cores can have highly different contrasts in TiO_2 nanotube arrays. However, after the carbon doping step the TiO_2 nanotube arrays were stained by a collection of small masses, as shown Fig. S1 b. These fully covered the TiO_2 nanotube arrays, causing the difference between the contrasts of the boundary lines and the hollow cores to decrease.