Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting Information

for

Facile heat reflux synthesis of blue luminescent carbon dots as optical nanoprobes for cellular imaging

Xianfeng Zhang,^{*,a} Jingbo Lu,^b Xianqing Li,^a Liucheng Chai^a and Yuhong Jiao^a

^a School of Material and Chemical Engineering, Bengbu University, Bengbu 233030, P. R. China

^bAnhui Provincial Engineering Research Center for Polysaccharide Drugs, Department of Pharmacy, Wannan Medical College, Wuhu 241000, P. R. China

**Corresponding author:* E-mail: zxf@bbc.edu.cn

Figure S1. (a) Image of CD solutions after synthesis at different temperatures. (b) Fluorescence spectra of the CDs synthesized at different temperatures.

Figure S2. (a) Fluorescence spectra of the CDs synthesized with different reaction times. (b) Fluorescence intensity at 437 nm as a function of reaction time.

Figure S3. Fluorescence spectra of the CDs synthesized using different concentrations of L-glutamic acid.

Figure S4. (a) Fluorescence spectra of the CDs synthesized with different amount of PEG-200 in the presence of 2.0 g L-glutamic acid. (b) The change of luminescence intensity of the CDs prepared with different amount PEG-200.

Figure S5. Fluorescence spectra of the CDs synthesized using (a) PEG-200 in the presence of L-glutamic acid, (b) PEG-200 in the absence of L-glutamic acid, and (c) L-glutamic acid aqueous solution, respectively.

Figure S6. Fluorescence spectra of the CDs synthesized by different methods: (a) the direct heat reflux synthesis, and (b) the solvent-thermal method at 120 °C for 40 min.

Figure S7. Fluorescence spectra of the CDs synthesized using the direct heat reflux synthesis (a, c, e) and the solvent-thermal method (b, d, f) with ascorbic acid (a, b), citric acid (c, d), and sucrose (e, f) as the carbon source, respectively.

Substance	Area	Abs. at 360 nm	Refractive	QY
			index	(%)
Quinine sulphate	17878.8	0.046	1.33	54
L-glutamic acid	2221.9	0.049	1.33	6.3

Table 51. Qualitum yield of the CD samples
--

Figure S8. (a) Fluorescence spectra of the as-prepared CDs at various temperatures. (b) The relative fluorescence intensity (I/I_0) of CDs as a function of temperature during heating and cooling processes (the fluorescence intensity at 15 °C as the reference).

Figure S9. Fluorescence spectra of the synthesized CDs after different periods of storage.

Figure S10. Fluorescence normalization intensities of the CDs upon the addition of different metal ions (10 mM).