Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

## **Supporting Information**

## Facile synthesis of thiazole-functionalized magnetic microspheres for

## highly specific separation of heme proteins

Binghai Wang<sup>a</sup>, Juanqiang Wang<sup>a</sup>, Qian Shao<sup>a</sup>, Xingjun Xi<sup>b</sup>, Qiao Chu<sup>b</sup>, Genlai Dong<sup>b</sup> and Yun Wei<sup>a</sup>\*



Fig. S1 HRTEM image of Fe<sub>3</sub>O<sub>4</sub> microspheres

<sup>\*</sup> Corresponding author: Yun WEI, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China, Tel & fax: 0086 10 64442928. E-mail: <u>weiyun@mail.buct.edu.cn</u>



Fig. S2 XRD patterns of Fe<sub>3</sub>O<sub>4</sub> (a), Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> (b) and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@AT (c)

The diffraction peaks ( $2\theta$ =30.1°, 35.5°, 43.1°, 53.4°, 57.0° and 62.6°) for Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@AT were indexed as (220), (311), (400), (422), (511) and (440), respectively. The positions of these peaks matched well with database for magnetite in the JCPDS-International Center for Diffraction Data (JCPDS Card: 19-629) file. The XRD patterns indicated that the Fe<sub>3</sub>O<sub>4</sub> crystalline structure did not change before and after each step of the chemical modification reaction.



Fig. S3 The size-distribution analysis of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@AT with a log-normal fit



Fig. S4 Raman spectra of Fe<sub>3</sub>O<sub>4</sub> microspheres



Fig. S5 Zeta potentials of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@AT in different pH solutions



Fig. S6 The use of the recycled Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@AT for hemoglobin adsorption

The result of recycle experiment was shown in Fig. S6. The hemoglobin adsorption-desorption process was repeatedly used for 6 cycles, and the adsorption efficiency was still maintained at 85%. It indicated that the prepared microspheres were very stable for separation of hemoglobin.



Fig. S7 N<sub>2</sub> adsorption/desorption isotherms (at 77K) and the pore size distribution curves (inset) of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@AT and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@IL composite

| Table S1 | Properties | of differen | t adsorbents | for | hemoglobin | capture |
|----------|------------|-------------|--------------|-----|------------|---------|
|          |            |             |              |     |            |         |

| Adsorption material                                              | Size                              | Capacity for | Capture time |
|------------------------------------------------------------------|-----------------------------------|--------------|--------------|
|                                                                  |                                   | hemoglobin   |              |
| Mesoporous silica <sup>62</sup>                                  | 50 and 10 $\mu$ m (pore diameters | 300 mg/g     | 30 min       |
|                                                                  | from 6 to 20 nm)                  |              |              |
| Mesoporous TiO <sub>2</sub> -SiO <sub>2</sub> <sup>63</sup>      | Wall thickness ~5 nm (pore        | 301.8 mg/g   | 12 h         |
|                                                                  | diameters from 5.8 to 7.25 nm)    |              |              |
| Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub> @IL(previous    | ~300 nm (pore diameter 13.71 nm)  | ~2.0 g/g     | 15 min       |
| work) <sup>49</sup>                                              |                                   |              |              |
| Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub> @AT (This work) | 322 nm (pore diameter 11.6 nm)    | 2.02 g/g     | 15 min       |

## References

- [49] Y. Wei, Y. Li, A. L. Tian, Y. T. Fan and X. Wang, J. Mater. Chem. B., 2013, 1, 2066.
- [62] P. Laveille, A. Falcimaigne, F. Chamouleau, G. Renard, J. Drone, F. Fajula, S. Pulvin, D. Thomas, C. Baillyc and A. Galarneau, *New J. Chem.*, 2010, 34, 2153.
- [63] L. L. Luo, F. Kong, S. Chu, Y. J. Liu, H.Y. Zhu, Y. Wang and Z. G. Zou, New J. Chem., 2011, 35, 2832.