Electronic Supplementary Material (ESI) for New Journal of Chemistry

A Comprehensive Study of Substituent Effects on

Poly(dibenzofulvene)s

Michael Y. Wong*a and Louis M. Leunga

^aDepartment of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong

SAR, China. E-mail: myw1011@gmail.com

Content

Figure S1. ¹ H NMR spectrum of 2- <i>N</i> , <i>N</i> -dimethylaminodibenzofulvene in				
CDCl ₃				
Figure S2 . ¹³ C NMR spectrum of 2- <i>N</i> , <i>N</i> -dimethylaminodibenzofulvene in	S3			
CDCl ₃				
Figure S3. HRMS (MALDI-TOF) spectrum of 2-N,N-	S3			
dimethylaminodibenzofulvene				
Figure S4. ¹ H NMR spectrum of 2-fluorodibenzofulvene in CDCl ₃				
Figure S5. ¹³ C NMR spectrum of 2-fluorodibenzofulvene in CDCl ₃				
Figure S6. ¹ H NMR spectrum of poly(FDBF) in CDCl ₃				
Figure S7. ¹ H NMR spectrum of poly(MeODBF) in CDCl ₃	S5			
Figure S8 . ¹ H NMR spectrum of poly(NMe2DBF) in CDCl ₃	S 6			
Figure S9 . GPC traces of some substituted poly(DBF) s				
Figure S10. Comparison of IR spectra between poly(CNDBF) (both				
soluble and insoluble fractions) and 2-cyanofluorene with peak				
assignments				
Figure S11. Comparison of IR spectra between poly(NO2HexODBF) and	S7			
2-hexoxy-7-nitrofluorene with peak assignments				
Figure S12. Normalized absorption spectra of some substituted	S 8			
poly(DBF)s in THF				
Figure S13. Normalized emission spectra of some substituted poly(DBF)s	S 8			
in THF				
Figure S14. Normalized absorption spectra of poly(BrHexODBF) and 2-				
bromo-7-hexoxyfluorene in THF				

Figure S15. Normalized emission spectra of poly(BrHexODBF) and 2-	S9
bromo-7-hexoxyfluorene in THF	
Figure S16. Normalized emission spectra of poly(CNDBF) and 2-	S10
cyanofluorene in THF	
Figure S17. Cyclic voltammograms of some substituted poly(DBF)s in	S11
THF with 0.1 M n -Bu ₄ NPF ₆ as the supporting electrolyte	
Figure S18 . Cyclic voltammograms of poly(NMe2DBF) s in THF with 0.1	S11
M n -Bu ₄ NPF ₆ as the supporting electrolyte	
Figure S19. GPC traces of poly(DBF) after annealing (top, in blue) and	S12
before annealing (bottom, in red)	
Table S1. Electrochemical data of the substituted poly(DBF) s.	S12

Figure S1. ¹H NMR spectrum of 2-*N*,*N*-dimethylaminodibenzofulvene in CDCl₃.

Figure S2. ¹³C NMR spectrum of 2-*N*,*N*-dimethylaminodibenzofulvene in CDCl₃.

Figure **S3**. HRMS (MALDI-TOF) spectrum of 2-*N*,*N*-dimethylaminodibenzofulvene.

Figure S4. ¹H NMR spectrum of 2-fluorodibenzofulvene in CDCl₃.

Figure S5. ¹³C NMR spectrum of 2-fluorodibenzofulvene in CDCl₃.

Figure S6. ¹H NMR spectrum of poly(FDBF) in CDCl₃.

Figure S7. ¹H NMR spectrum of **poly(MeODBF)** in CDCl₃.

Figure **S8**. ¹H NMR spectrum of **poly(NMe2DBF)** in CDCl₃.

Figure **S9**. GPC traces of some substituted **poly(DBF)**s.

Figure **S10**. Comparison of IR spectra between **poly(CNDBF)** (both soluble and insoluble fractions) and 2-cyanofluorene with peak assignments. The spectra suggest that both fractions contain same chemical composition.

Figure **S11**. Comparison of IR spectra between **poly(NO2HexODBF)** and 2-hexoxy-7-nitrofluorene with peak assignments.

Figure **S12**. Normalized absorption spectra of some substituted **poly(DBF)**s in THF. Arrows indicate the lowest-energy absorption peak wavelengths.

Figure S13. Normalized emission spectra of some substituted **poly(DBF)**s in THF. Arrows indicate the defect emissions.

Figure **S14**. Normalized absorption spectra of **poly(BrHexODBF)** and 2-bromo-7-hexoxyfluorene in THF.

Figure **S15**. Normalized emission spectra of **poly(BrHexODBF)** and 2-bromo-7-hexoxyfluorene in THF. Arrow indicates the emission of defect in the polymer which matches the emission maximum of 2-bromo-7-hexoxyfluorene.

Figure **S16**. Normalized emission spectra of **poly(CNDBF)** and 2-cyanofluorene in THF. The arrow indicates the emission of the stereochemical defect in the polymer which matches the emission maximum of 2-cyanofluorene. Note the excimer emission strongly outweighs that of the defects despite the low molecular weight of the polymer.

Figure **S17**. Cyclic voltammograms of some substituted **poly(DBF)**s in THF with 0.1 M n-Bu₄NPF₆ as the supporting electrolyte. Arrows indicate oxidation potentials.

Figure S18. Cyclic voltammograms of **poly**(NMe2DBF)s in THF with 0.1 M n-Bu₄NPF₆ as the supporting electrolyte.

Figure S19. GPC traces of **poly(DBF)** after annealing (top, in blue) and before annealing (bottom, in red).

	$HOMO^{b}(eV)$	$LUMO^{c}$ (eV)	$\Delta E^{d} (eV)$
Poly(DBF)	-5.66	-1.79	3.87
Poly(MeODBF)	-5.61	-1.96	3.70
Poly(NMe2DBF)	-5.01	-1.90	3.11
Poly(FDBF)	-5.76	-1.91	3.85
Poly(BrDBF)	-5.86	-2.05	3.81
Poly(IDBF)	-5.83	-2.07	3.76
Poly(CNDBF)	-5.93	-2.58	3.35
Poly(NO2DBF)	-6.07	-3.12	2.95
Poly(NO2PrODBF)	-5.75	-3.14	2.61
Poly(NO2HexODBF)	-5.66	-3.07	2.59
Poly(BrMeODBF)	-	_	_
Poly(BrPrODBF)	-5.64	-1.97	3.70
Poly(BrHexODBF)	-5.61	-1.89	3.72
Poly(Br2DBF)	_	_	_

Table S1. Electrochemical data of the substituted poly(DBF)s.^a

^{*a*} Performed in degassed THF under N₂ with 0.1 M *n*Bu₄NPF₆ as the supporting electrolyte. ^{*b*} HOMO energies are obtained with reference to ferrocene internal standard by relation: HOMO = $-(E_{Fc}^{1/2} + 4.8)$ eV. ^{*c*}LUMO energies are estimated from HOMO and bandgap (ΔE) by relation: ΔE = |HOMO|-|LUMO|. ^{*d*}Bandgap is estimated from the absorption onset wavelength.