Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Information

Influence of Graphene Oxide Supports on Solution-Phase Catalysis of Thiolate-Protected Palladium Nanoparticles in Water

Vivian Chen, Hanqing Pan, Roxanne Jacobs, Shahab Derakhshan and Young-Seok Shon*

Department of Chemistry and Biochemistry, California State University, Long Beach, 1250

Bellflower Blvd., Long Beach, California, 90840, United States.

*For correspondence: Email: ys.shon@csulb.edu.

I.	Spectroscopic and Microscopic Characterization of Pd Nanoparticles and Pd				
	Nanoparticle-Graphene Oxide Hybrids	2			
II.	Heat Treatments of Palladium Nanoparticle-Graphene Oxide Hybrids	4			
III.	Catalysis Studies Comparing PdNP, PdNP/GO, and Heated PdNP/GO	6			
IV.	Recyclability and Colloidal Stability of PdNP, PdNP/GO, and Heated PdNP/GO	8			

I. Spectroscopic and Microscopic Characterization of Pd Nanoparticles and Pd Nanoparticle-Graphene Oxide Hybrids

Figure S1. IR spectra of (a) sodium ω -carboxyl-S-hexanethiosulfate (the ligand precursor) and (b) ω -carboxylate-1-hexanethiolate-capped palladium nanoparticles. The peaks at >3400 cm⁻¹ in spectrum (a) is due to C=O overtone. The presence of O-H, C-H, C=O, and C-O stretching vibrations are clearly seen on both spectra.

Figure S2. (a) UV-Vis spectrum and (b) TGA graph of ω -carboxylate-1-hexanethiolate-capped palladium nanoparticles. No absorption or plasmon bands are seen in UV-vis spectrum. TGA plot shows a ~10% weight loss by 300 °C and an additional 15% by 400 °C.

Figure S3. (a) UV-vis and (b) IR spectra of PdNP/GO hybrids. Only an exponential decay with increasing wavelength is shown in spectra (a). Stretching vibrations corresponding to the IR characteristics of ω -carboxylate-1-hexanethiolate ligands and GO are shown in spectra (b).

II. Heat Treatments of Palladium Nanoparticle-Graphene Oxide

Figure S4. a) IR and b) UV-Vis spectra of PdNP/GO hybrids heated at 50-400 °C.

	Particles			
Temperature (°C)	PdNP/GO			
50	2.03 ± 0.81			
100	2.07 ± 0.96			
150	2.38 ± 1.58			
200	2.41 ± 1.21			
250	2.46 ± 1.34			
300	7.06 ± 2.85			

Table S1. The transitions of the average core size and dispersity of heated PdNP/GO.

Figure S5. Powder XRD pattern of PdNP/GO hybrids heated at 300 °C.

III. Catalysis Studies Comparing PdNP, PdNP/GO, and Heated PdNP/GO

Figure S6. Examples of NMR spectra of DMAD hydrogenation showing the signals for semiand full-hydrogenation products. The semi-hydrogenation product has two distinct hydrogens at δ 3.80 ppm (-OC<u>H</u>₃) and δ 6.50 ppm (C=C-<u>H</u>). The full-hydrogenation product also has two distinct hydrogens at δ 3.70 ppm (-CO₂C<u>H</u>₃) and δ 2.69 ppm (CH₂-C<u>H</u>₂).

Table S2. Summary of turn-over-frequency (TOF) for semi- and full-hydrogenation products with PdNP, PdNP/GO, and PdNP/GO heated at 300 °C.

PdNP ^a		PdNP/GO ^a		PdNP/GO 300 °C ^b	
TOF _{semi}	TOF _{full}	TOF _{semi}	TOF _{full}	TOF _{semi}	TOF _{full}
916	201	871	156	48	321

^a TOF (site⁻¹hour⁻¹) was calculated based on the model of Pd₂₂₅ (2.0 nm) with 140 surface Pd atoms after 3 h reaction. ^b TOF (site⁻¹hour⁻¹) was calculated based on the model of Pd₆₂₆₆ (5.5 nm) with 1472 surface Pd atoms after 24 h reaction.

Figure S7. Powder XRD pattern of heated PdNP/GO hybrids after catalytic reaction.

IV. Recyclability and Stability of PdNP, PdNP/GO, and Heated PdNP/GO

(a)

(b)

Figure S8. TEM images of (a) PdNP and (b) PdNP/GO after the recycled uses.