Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supporting Information

Biomimetic oxidation of cyclic and linear alkanes: high alcohol selectivity promoted by a novel manganese porphyrin catalyst

Vinicius Santos da Silva,^a Warleson Cândido dos Santos Vieira,^a Alexandre Moreira Meireles,^a Geani Maria Ucoski,^b Shirley Nakagaki,^b Ynara Marina Idemori,^a Gilson DeFreitas-Silva^a

*gilsonufmg@ufmg.br

^aDepartamento de Química, Instituto de Ciências Exatas, Universidade Federal de

Minas Gerais (UFMG), 31.270-901. Belo Horizonte, MG, Brazil.

^bLaboratório de Bioinorgânica e Catálise, Departamento de Química –Centro

Politécnico, Universidade Federal do Paraná (UFPR), 81.531-980. Curitiba, PR, Brazil.

***Corresponding author:**

Prof. Gilson de Freitas Silva (G. DeFreitas-Silva) Departamento de Química – Instituto de Ciências Exatas – Universidade Federal de Minas Gerais Belo Horizonte, MG, 31270-901, BRAZIL Tel.: +55 31 3409 5772. Email address: gilsonufmg@ufmg.br

The brominated free-base porphyrin $H_2[Br_{12}T4(-OMe)PP]$, Figure S1,was obtained according to the methodology described by Rebouças et al 2002 [1]. Then, the porphyrin was characterized by UV-Vis spectroscopy (Figure S2) and ¹H NMR (Figure S4).

Figure S1. Structural representation of the brominated free-base porphyrin $H_2Br_{12}T4(-OMe)PP (H_2Br_{12}Por)$.

Figure S2. UV-vis spectrum of the (a) free-base porphyrin H_2T4 (-OMe)PP (H_2P or, 3.15 \times 10⁻⁶ mol L⁻¹) and (b) brominated free-base porphyrin H₂Br₁₂T4(-OMe)PP (H₂Br₁₂Por) in $CH₂Cl₂$.

The spectrum of the $H_2Br_{12}T4$ (-OMe)PP Figure S2 (b) reveals a bathochromic shift of the Soret band as compared to the spectrum of the freebase porphyrin H_2T4 (-OMe)PP Figure S2 (a). This usually occurs upon bromination of free-base porphyrins and has been reported in the literature [2, 3].

Analysis of the ${}^{1}H$ NMR spectra indicated that bromine atoms were introduced into one of the *-ortho* positions relative to the methoxy (-OCH₃) substituents and into each of the β-pyrrole positions of the macrocycle.

Figure S3.¹H NMR spectrum of H_2T4 (-OMe)PP (H_2P or) recorded at 400 MHz, in CDCl₃ at 25 ^oC. δ 8.86 (s, 8H, β-pyrrole) 8.15 (d, 4H, *ortho*-aryl), 8.07 (m, 8H, *meta*-aryl), 4.10 (s, 12H, methoxy) and -2.75 (s, 2H, pyrrole N-H).

Figure S4.¹H NMR spectrum of $H_2Br_{12}T4$ (-OMe)PP ($H_2Br_{12}Por$) recorded at 400 MHz, in CDCl₃ at 25 °C. δ 8.39 (d, 4H, *ortho*-aryl), 8.07 (m, 4H, *meta*-aryl), 7.35 (s, 4H, *ortho*aryl), and 3.98 (s, 12H,methoxy).

The compounds studied here were characterized by infrared spectroscopy, Figure S5.The results confirmed the formation of the second- and third-generation metalloporphyrins.

Figure S5. FTIR spectrum of H₂T4(-OMe)PP (1), [Mn^{III}T4(-OMe)PPCI] (2); and $[Mn^{III}Br_{12}T4(-OMe)PPCI]$ (3) in KBr pellets.

[Mn^{III}T4(-OMe)PPCI] FTIR in KBr (cm⁻¹): (1604) δ C=C; (1294) δ porphyrin skeleton; (1249) v C-O-C; (1173) v OCH₃; (1004) δ Mn-N. [Mn^{III}Br₁₂T4(-OMe)PPCI] FTIR in KBr (cm⁻¹): (1594) δ C=C; (1289) δ porphyrin skeleton; (1272) v C_β–Br; (1255) v C-O-C; (1175) v OCH₃; (1004) δ Mn-N.

The novel third-generation brominated manganese porphyrin ($MnBr_{12}Por$) was characterized by mass spectrometry (Figure S6).

Figure S6. Mass spectrum of $[Mn^{III}Br_{12}T4(-OMe)PPCI]$. Analysis conducted in CH₃OH with the ESI-MS operating in the positive mode.

The peak at m/z 1734.07 is associated with the loss of chloride ion $[Mn^IIIBr_{12}T4(-OMe)PP]^+$. The simulation of the spectrum using program ChemCalc (http://www.chemcalc.org/; Figure S7) is in agreement with the experimental spectrum. The peak at 1690.14 is associated with the loss of one bromine atom and protonation of macrocycle [Mn^{III}Br₁₁T4(-OMe)PPCI + H⁺] which m/z corresponds to 1690.19. The peak at 1806.16 can be associated with $[Mn^{\text{III}}Br_{12}T4(-OMe)PPCl + HCl + H^{+}]$, which m/z is equal 1806.08.

Figure S7. Simulated mass spectrum for the $[Mn^{\text{III}}Br_{12}T4(-OMe)PP]^+$ ion, $C_{48}H_{24}N_{4}O_{4}Br_{12}Mn^{+}$.

Table S1. Product yields obtained during the oxidation of *n*-hexane by PhIO or PhI(OAc)₂ catalyzed by MnP in CH₂Cl₂ under aerobic condition. Yields based on the oxidant.

Reaction conditions: [MnP or Mn(OAc)₂] = 5 x 10⁻⁴ mol L⁻¹, [PhIO or PhI(OAc)₂] = 5 × 10⁻³ mol L⁻¹, MnP/Oxidant/n-hexane/CH₂Cl₂ molar ratio = 1:10:3630:15550, 25 °C, magnetic stirring, 90 min of reaction.¹Yields based on the oxidant. 2-ol: 2-hexanol, 3-ol: 3-hexanol, 2-one: 2-hexanone and 3-one: 3-
hexanone. ²The degree of catalyst destruction was calculated from the UV-Vis absorption spectra
recorded at the total moles products per mol catalyst.

Table S2. Product yields obtained during the oxidation of cyclohexane by PhIO or PhI(OAc)₂ catalyzed by MnP in CH_2Cl_2 under aerobic condition. Yields based on the oxidant.

Reaction conditions: MnP or Mn(OAc)₂/Oxidant/cyclohexane/CH₂Cl₂ molar ratio = 1:10:4650:15550, 25 °C,
magnetic stirring, 90 min of reaction. ¹Yields based on the oxidant. ²The degree of catalyst destruction was calculated from the UV-Vis absorption spectra recorded at the end of the reaction. ³The maximum error is \pm 0.5% with confidence level of 95%.⁴Oxidant/cyclohexane/CH₂Cl₂ molar ratio = 50:4650:15550. 5 MnP/Oxidant/cyclohexane/CH₂Cl₂ molar ratio = 1:50:50:23325. 6 MnP/Oxidant/cyclohexane/CH₂Cl₂ molar ratio = 1:50:4650:15550. ⁷Selectivity for the alcohol was determined from the relation: Selectivity = 100 \times [%Cy-ol / (%Cy-ol + %Cy-one)]. ${}^{8}TON =$ total moles products per mol catalyst.

Table S3. Product yields obtained during the oxidation of adamantane by PhIO or PhI(OAc)₂ catalyzed by MnP in CH_2Cl_2 under aerobic condition. Yields based on the oxidant.

<u>Reaction conditions</u>: [MnP or Mn(OAc)₂] = 5 x 10⁻⁴ mol L⁻¹, [PhIO or PhI(OAc)₂] = 5 × 10⁻³ mol L⁻¹, MnP/Oxidant/adamantane/CH₂Cl₂ molar ratio = 1:10:100:23325, 25 °C, magnetic stirring, 90 min. of reaction. ¹Yields based on the oxidant. 1-adol: 1-adamantanol, 2-adol: 2-adamantanol. ²The degree of catalyst destruction was calculated from the UV-Vis absorption spectra recorded at the end of the reaction.
³TON = total moles products per mol catalyst.

Figure S8. UV-vis transient spectra of (a) MnPor and (b) MnBr₁₂Por in presence of PhIO in CH2Cl2. Condition of reaction: molar ratio: MnP:PhIO 1:10.

Figure S9. UV-vis transient spectra of (a) MnPor and (b) MnBr₁₂Por in presence of PhI(OAc)₂ in CH_2Cl_2 . Condition of reaction: molar ratio: MnP:PhI(OAc)₂ 1:10.

References

[1] J.S. Rebouças, M.E.M.D. de Carvalho, Y.M. Idemori, J. Porphyrins Phthalocyanines, 06 (2002) 50-57.

[2] Y. Fang, P. Bhyrappa, Z. Ou, K.M. Kadish, Chem.-A Eur. J., 20 (2014) 524-532.

[3] V.S. da Silva, L.I. Teixeira, E. do Nascimento, Y.M. Idemori, G. DeFreitas-Silva,

Appl. Catal.A: Gen., 469 (2014) 124-131.