Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Designing different morphologies of NiFe₂O₄ for tuning of structural, optical and magnetic properties for catalytic advancements

Manisha Dhiman^a, Ankita Goyal^a, Vinod Kumar^b, Sonal Singhal^{a*}

^aDepartment of Chemistry, Panjab University, Chandigarh, India-160014.

^bIcon Analytical Equipment (P) Ltd., Mumbai, 400018, India

<u>sonal1174@gmail.com;</u> <u>sonal@pu.ac.in</u>

CORRESPONDING AUTHOR:	Sonal Singhal
	Associate Professor,
	Department of Chemistry,
	Panjab University,
	Chandigarh, India - 160 014
	Ph. No. +91-172-2534421(o)
	+91-09872118810(m)
	Fax No. +91-172-2545074
	E-mail: <u>sonal1174@gmail.com</u>

Supplementary material

Fig. S1. Typical FT-IR spectra of NiFe₂O₄ nanostructures (a) NiFe-1 (b) NiFe-2 (c) NiFe-3 (d) NiFe-4 (e) NiFe-5 and (f) NiFe-6.

Fig. S2. The fitting curves of the BET surface area of NiFe₂O₄ nanostructures

Fig. S3. Change in SO degradation rate with variation in (a) catalyst loading (b) H_2O_2 concentration (c) pH using NiFe₂O₄ nanoparticles as catalyst.