Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

BSA-Coated Fluorescent Organic-Inorganic Hybrid Silica Nanoparticles: Preparation, and Drug Delivery

Zengming Yang, Hengchang Ma, Zijie Jin, Haiying Cao, Lei Lei, Yucheng Ma, Ziqiang Lei

Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

Contents

1. General information	S2
2. Synthetic procedures of TPA-1,TPA-2, and TB	S3~S4
4. Spectroscopic studies and images (Figures S1~S7)	
5. Copies of NMR spectra(Figures S8~S10)	S8~S11

General information

Triphenylamine (TPA, 99%), phosphorus oxychloride (POCl₃), SiO₂, surface area 300 m²/g, particle sizes 50-60 nm, density 1.9 g/cm³, potassiumiodide (KI, 99%), Potassium Iodate(KIO₃, 99%), Bovine Serum Albumin (BSA, 98%), Methylacrylate (MA, 98%), and Palladium acetate (Pd(OAc)₂, 99%), 1,3-bis(diphenylphosphino)propane (DPPP, 98%), Triethylamine(Et₃N, 99%) purchased from Aladdin Co. Other commercial reagents were purchased from Aladdin Co. and Energy Chemical Co. and used without further purification unless otherwise stated. SiO₂-NH₂ nanoparticles were obtained by the documented method. (*J. Mater. Chem.*, 2012, 22, 18961-18967)

Room temperature ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) spectra were recorded on a MERCURY spectrometer with $CDCl_3$ as the solvent and tetramethylsilane (TMS) as the internal reference.

Fourier transform infrared (FT-IR) spectra were recorded on a Nicolet AVATAR 360 TF-IR spectrophotometer using KBr tablets. UV-visible absorption spectra (UV) were recorded on a TU-1901 spectrometer from 190 to 1100 nm.

Fluorescence spectra were measured using a PE LS-55 Luminescence/Fluorescence Spectrophotometer.

Circular dichroism were measured using a JASCO J805 Spectrometer.

Particle size measurements process were performed on a Zetasizer Nano ZS dynamic light scattering (DLS) system.

The morphology of DNDT&SiO₂-NH₂ and BSA& DNDT&SiO₂-NH₂ was observed by scanning electron microscopy (SEM, ZEISS ULTRA PLUS). All the samples were prepared according to the standard methods.

Scheme S1 The synthetic route of TPA-1, TPA-2 and DNDT.

Synthesis of TPA-1

Triphenylamine (0.49 g, 2 mmol) was dissolved in DMF (8 mL) and placed in a 100 mL flask. phosphorousoxychloride (0.78 g, 5mmol) was added dropwise in ice bath, and the reaction mixture is stirred for 10 minutes at 0 °C. And then the mixture was refluxed at 45 °C for 8 h under N₂ atmosphere. The reaction solution was quenched with cold water (100 mL) and white solid was obtained. The residue was purified by column chromatography on silica gel (300-400 mesh) with a mixture of ethyl acetate and petroleum ether as eluent (1:100 by volume), leading to the purified TPA-1 0.44 g, yield: 75%. ¹H NMR (CDCl₃): δ 9.76 (s, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.18-7.24 (d, J = 8.4 Hz, 6H), 7.42 (d, J = 8.0 Hz, 4H), 7.71 (d, J = 8.4 Hz, 2H),.

Synthesis of TPA-2

In а 50 mL two necked round bottom flask, 1.6 g(6 mmol, 1.0 equiv) of 4-(diphenylamino)benzaldehyde and 2.241 g(13.5 mmol, 2.25equiv) of potassium iodide were dissolved in the mixture of acetic acid (24 mL) and H₂O (2.4 mL) under N₂. The mixture was warmed and stirred to yellow transparent solution, then potassium iodate 2.889 g (13.5 mmol, 2.25 equiv) was added within several times. The reaction mixture was warmed to reflux and stirred for 1 h. Then the mixture was cooled to room temperature and pour in distilled water, and dark yellow solid was obtained. The crude product was purified by column chromatography directly to afford 4-(bis(4-iodophenyl)amino)benzaldehyde (TPA-2) as an orange solid (2.6 g, 5.1 mmol, 84.8% yield). M.P.: 146-151 °C; ¹H NMR (600 MHz, CDCl₃) δ (TMS, ppm): 9.84 (s, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.5 Hz, 4H), 7.05 (d, J = 8.3 Hz, 2H), 6.89 (d, J = 8.4 Hz, 4H). ¹³C NMR (150 MHz, CDCl₃) δ(ppm) 190.35, 152.17, 145.69, 138.85, 131.34, 130.31, 127.60, 120.75, 88.75. MS (FAB): $m/z = 524.91 [M+H]^+$

Synthesis of TB

Pyrrole (5 mL, 72 mmol) and TPA-1 (0.786 g, 2.88 mmol) are added to a dry 100 mL round-bottomed flask and degassed with a stream of N₂ for 5 min. TFA (22.2 μ L, 0.5 mmol) was then added, and the solution is stirred under N2 at room temperature. TLC analysis indicates that the disappearance of spots corresponds to TPA-1 and appearance of a new spot corresponds to compound TPA-diP. The solvent is removed on a rotary evaporator under vacuum, and the crude compound is passed through flash silica gel column chromatography with a mixture of ethyl acetate and petroleum ether as eluent (1:6 by volume). The resultant compound TPA-diP (0.389g, 1 mmol) is dissolved in freshly distilled dichloromethane and oxidized with DDQ (272.4 mg, 1.2 mmol) for 30 min at room temperature. The reaction mixture is then treated with a small amount of Et₃N (5.6 mL, 40 mmol) followed by BF₃•OEt₂ (6.3 mL, 50 mmol), and the mixture is stirred for an additional 30 min at room temperature. The solvent is removed in a rotary evaporator, and the resultant crude compound is purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1) and afforded pure TB (144.8mg, 26%) as a purple solid.Mp 212-214 °C; ¹HNMR (400 MHz, CDCl₃) δ 7.90 (s, 2H), 7.40 (m, 6H), 7.23-7.06 (m, 10H), 6.55 (s, 2H) ppm.¹³C NMR (100 MHz, CDCl₃): δ 150.94, 147.52, 146.47, 142.77, 134.63, 132.25, 131.00, 129.67, 126.22, 125.94, 124.70, 120.02, 117.95 ppm. MS (FAB): m/z = 435.17 [M+H]⁺. IR (KBr): 3105, 3059, 3036, 1587, 1558, 1533, 1488, 1412, 1388, 1332, 1294, 1261, 1224, 1192, 1118, 1076, 980, 911, 757, 742, 696 cm⁻¹.

Fig. S1 FT-IR spectrum of DNDT, SiO₂-NH₂, and DNDT&SiO₂-NH₂.

Fig. S2 (A) Absorbance spectra of DNDT&SiO₂-NH₂ in different solvents. (B) Emission spectra of DNDT&SiO₂-NH₂ in different solvents. (solution concentration: $5 \times 10^{-3} \text{ g/L}$, $\lambda_{ex} = 370 \text{ nm}$).

Fig. S3 (A) Emission spectra of DNDT&SiO₂-NH₂ in DMSO/water mixtures. (B) Plots of maximum emission intensity (I/I_0) of DNDT&SiO₂-NH₂ versus water fraction in the DMSO/H₂O mixture. (solution concentration: 5×10^{-3} g/L, $\lambda_{ex} = 370$ nm).

Fig. S4 (A) Emission spectra of different mass concentrationDNDT&SiO₂-NH₂ in CHCl₃. (B) Plot of PL enhancement versus DNDT&SiO₂-NH₂ concentration. (*I* denotes the peak PL intensity and I_0 denotes the peak PL intensity of DNDT&SiO₂-NH₂ concentration=2.5-30x10⁻³ g/L.solution concentration: $5x10^{-3}$ g/L, $\lambda_{ex} = 370$ nm)

Fig. S5 (A) Normalized absorption spectra of DNDT&SiO₂-NH₂ at different PA concentrations. (B) Emission spectra ofDNDT&SiO₂-NH₂ at different PA concentrations. (DNDT&SiO₂-NH₂ solution concentration: 5 x 10⁻³ g/L, $\lambda_{em} = 370$ nm)

Fig. S6 Normalized absorption spectra of DNDT&SiO₂-NH₂ at different PA concentrations.

Fig. S7 (A)The relative PL intensity (I/I_0) ofDNDT&SiO₂-NH₂ at different PA concentrations. (B) The plot of detection limit analysis of DNDT&SiO₂-NH₂toward PA. (D_L=2 x 10⁻⁹M=2PPb) (C) Selectivity graph of DNDT&SiO₂-NH₂ toward various nitro derivatives. (D) Photograph of gel of DNDT&SiO₂-NH₂(on the left) and DNDT&SiO₂-NH₂ within PA(on the right).

Fig. 8¹H NMR spectra of TPA-1 in CDCl₃.

Fig. 9¹H and ¹³C NMR spectra of TPA-2 in CDCl₃.

Fig. 10 ¹H and ¹³C NMR spectra of DNDT in CDCl₃.

Fig. 11 1 H and 13 C NMR spectra of TB in CDCl₃.