
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

Following the nano-structural molecular orientation guidelines for sulfur versus thiophene units in small molecule photovoltaic cells

Yu Jin Kim and Chan Eon Park*

POSTECH Organic Electronics Laboratory, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea

Fig. S1 Normalized UV-vis absorption spectra of pure small molecule (a) and small molecule:PC₇₁BM films (b).

We investigated the UV-vis absorption spectra of active films (pure small molecule (a) and small molecule: $PC_{71}BM$ films (b)). In the pure small molecule films, the **DR3TSBDT** absorption spectrum more red-shifted relative to that in **DR3TBDTT** film. Furthermore, the absorption maximum peak (λ_{max}) at ca. 630 nm appears with shaper and more intense in pure **DR3TSBDT** film. These results indicate that the presence of more ordered aggregation and stronger π – π stacking appears in **DR3TSBDT** films^{S1}, which are agree with AFM and 2D-GIWAXS analyses. Moreover, in the small molecule: $PC_{71}BM$ films, the absorption spectrum of **DR3TSBDT** blends also slightly red-shifted with higher shoulder peak at ca. 635 nm than that of **DR3TBDTT**: $PC_{71}BM$ film. However, in short absorption range (300 – 500 nm), which is due to PCBM domains^{S2}, absorption band are revealed with stronger and higher intensity in the **DR3TBDTT**: $PC_{71}BM$ films. All Two findings are quite consistent with linecut profiles of 2D-GIWAXS (Fig. 4g-h).

S1 Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell and Y. Cao, *Nat. Photonics* 2015, **9**, 174-179.

S2 C. Dyer-Smith, I. A. Howard, C. Cabanetos, A. E. Labban, P. M. Beaujuge and F. Laquai, *Adv. Energy Mater.*, 2015, **5**, 1401778.