Supporting Information for

Study chemical processes involved in silver staining of gold

nanostructures by Raman scattering

Xiaohui Ji, Wensheng Yang*

Contribution from the College of Chemistry, Jilin University, Changchun

130012, P. R. China

*Corresponding authors: wsyang@.jlu.edu.cn

Fig. S1. TEM images of the gold dimers after the deposition of silver at the Ag^+/Au molar ratios ($R_{Ag^+/Au}$) of 0.3 (left) and 0.6 (right).

Fig. S2. (a) Raman spectra of p-MBA recorded with the silver-coated gold dimers prepared in the range of Ag^+ concentrations of $0-100 \ \mu$ M. (b) Variations in intensity of the peak at 1075 cm⁻¹ with the Ag^+ concentration. The concentration of gold atoms in the dimer solutions was 127.0 mg/L as measured by ICP-AES. The $R_{[AA]/[Ag+]}$ ratio was kept in stoichiometry (1:1) in all the reactions. The decrease in intensity of the peak at 1075 cm⁻¹ at the Ag^+ concentration of 20 μ M, corresponding to a silver shell thinner than one monolayer (equivalent to ~0.7 monolayer (ML) by assuming the lattice parameter for both bulk Au and Ag as 4.18 Å (see Ref. 48 in the text).

Fig. S3. TEM images of the bimetallic nanostructure with *p*-MBA sandwiched between the two metals with Ag^+/Au molar ratios ($R_{Ag^+/Au}$) of 0.3 (left) and 0.6 (right) related to Figure 6 in the text.