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SI-1. SPP mode in nanowire
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Fig. 1-SI.

Figure 1-SI shows a metal nanowire of the length  and of radius  ( ), embedded wirel a wirea l

into dielectric medium with the permittivity . The permittivity of the metal is d

 In our description, we are following the arguments of [Novotny L. and Hecht B.,   2 21m pl    

Principles of Nano-Optics, Chapter 12 - Surface Plasmons, 12.3.1 Plasmons supported by wires and particles].  

The fundamental surface plasmon mode in the quasistatic approximation has the frequency

(SI-1)1sp pl d   

The electric field inside the nanowire is homogeneous  and is assumed to be along the z axis:  

(SI-2) 1 , . .spi t
ot e c c  E r E

Outside the nanowire the field  is inhomogeneous: . One can 2E    2 2, .spi tt e c c  E r E r

show that outside the nanowire 
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(SI-3) 
4

2 2
2 4 ,o

aE a


 E r        

where  is the distance from the axis of nanowire.  The time-averaged energy of the field is 

given by [Landau, L. D.; Lifshitz, E. M. Electrodynamics of Continuous Media, Second Edition; Elsevier Science 

Ltd., 1984]: 

 (inside nanowire, ) (SI-4)
  2 2m

o o o

d
w

d
 

  


   E H a 

(outside nanowire, ) (SI-5)  2 2
2o d ow      E r H a 

Below, we use Eqs. (SI-4)-(SI-5) for the expression of the quasistatic mode, dropping the term 

.  The energy  in the mode is given by spatial integration (see Fig.1-SI):2
o  H modeW

(SI-6) 2 2
mode

sp

m
wire o o d

d
W dyd U l E a

d
 


  




 
    
 
 

 ρ

By taking into account Eq. (1), we have finally

(SI-7)  22
mode 2 1wire o d oW l a E    

One should note at the resonant frequency , the permittivity of nanoantenna 1sp pl d   

metal .  This implies that if we insert very thin dielectric layer inside the nanoantenna metal d  

normally to the homogeneous field (see Fig.1-SI), then the field inside the dielectric will be the 

same in magnitude as in the nanoantenna.  If we further insert metallic layer inside the dielectric 

layer, then the field inside this metallic layer will coincides with the field in nanoantenna. 
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This motivates usage of above formulas for the fields, obtained for pure metallic nanoantenna 

(see Fig.1-SI), in calculations of tunneling in nanoantennas with very thin dielectric and metallic 

layers inside the nanoantenna as we are doing in the paper. 
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SI-2. Wave functions  and  for single barrier, nonresonant  L z  R z

tunneling structures 
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         (a)     (b)

Fig. 2-SI. (a) Potential barrier  for tunneling electron in the case of a single dielectric layer  U z

between two metal electrodes with a schematic illustration of the wave functions  and  L z

 of an electron in the left and in the right electrodes, respectively. The tails of these wave  R z

functions penetrate and overlap into the barrier.  (b) Potential barrier  for a double-barrier  U z

structure with a Quantum Well located between two barriers, together with a schematic 

illustration of the wave functions  and  of electron in the left and right metals. The  L z  R z

energy level of the QW is shown as dark blue. The green arrow is the elastic tunneling, the red 

arrow is the inelastic tunneling with emission of plasmon and the dotted lines show the averaged 

potentials insides the barriers and the QW.
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The potential energy  for electron in tunneling structure with single barrier is shown in  U z

Fig. 2a-SI.  In calculations of  and , we are using the following approximations: L z  R z

(1) Generally speaking,  changes inside the barrier, in particular, due to the built-in field  U z

– see Fig. 2a-SI. In our calculations, we replace this changing potential inside the barrier with its 

average value .  So, we use the potential bU

(SI-8) 
0, 0

, 0
,

appr b

z
U z U z b

eV z b



  
 

                
        

          

where  is the barrier thickness. The barrier height  can be written as  b bU 2b FU W eV  

where  is Fermi energy in the metals,  is the work function from the metal into the F W

conduction band of the dielectric (semiconductor) in the barrier. 

(2) It is not overly hard to calculate the exact wavefunctions  and  for the  L z  R z

potential of Eq. (SI-8).  Nevertheless, for our purposes it is sufficient to employ the 

approximated functions ("tunneling functions"), used often in tunneling theory [Payne, M. C., 

Transfer Hamiltonian description of resonant tunneling, J. Phys. C: Solid State Phys., 1986, 19, 1145-1155].  

Namely,  is calculated for the potential L z

(SI-9) 
0, 0

, 0L
b

z
U z

U z


 


     
   

but  is calculated for the potential R z
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(SI-10) 
,

,
b

R

U z b
U z

eV z b
  
 

          
     

Correspondingly, we have the following wave functions:

(SI-11) 
,    0 1

v ,                  0

zL zL

L

ik z ik z
L

L z
z L

e A e z
z

B e z


 



   


where , ,  and ; and vz zLk m h
2 2 2 2

2 2
L zL

b
kU

m m

 

h h zL L
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k i
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
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(SI-12) 
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where 

, ,  and    
2 2 2 2

2 2
zR zLk k eV

m m
  

h h
h

2 2 2 2

2 2
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m m
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h h
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kB
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



(SI-13)

The above functions  and  must be properly normalized. Namely, the initial  L z  R z

function  is normalized onto the unit flux of probability for electron incident on the  L z

barrier, but the wave, describing the incidence of the electron on the barrier in the final function 

, is normalized onto unit density of probability [Landau, L. D.; Lifshitz, E. M. Quantum  R z

Mechanics: Non Relativistic Theory, Third Edition;  Elsevier Science Ltd., 1977]. Fig. 2a-SI in the paper 

illustrates the behaviour of the functions. 
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SI-3. Wave functions  and  for double-barrier structure with  L z  R z

resonant tunneling

Figure 2b-SI shows the energy diagram of structure with two barriers (dielectric or 

semiconductor) and quantum well (thin layer of metal or dielectric with forbidden gap, narrower 

than forbidden gap in surrounding barriers) between them.  The Quantum Well (QW) has a 

resonant level (dark blue), into which the electron can make an SPP-assisted transition (red 

arrow). This feature results in a substantial increase of the inelastic tunneling with emission of 

the SPP compared to a single-barrier structure.  One should stress that elastic tunneling (green 

arrow) is nonresonant (as in single barrier structure in Fig. 2a-SI).   

In the calculation of the initial electron wave function impinges with the velocity  the L vz

onto the barrier structure from the left (L) metal, we make the same approximations as for the 

single barrier case:

(A) "tunneling approximation", i.e. we calculate  for the potential L

 (SI-14) 

1

1 1

2

0,            
    0

        0

              

b
L

qw qw

b qw

z b
U b z

U z
U z l

U z l

 
      
 

where  ( ) is the average potential in barrier 1 (2), and  is the average potential in QW; 1bU 2bU qwU

(B) we consider the case of nonresonant tunneling, i.e. electron before emitting the SPP  is off 

resonances with levels in the QW, 
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so that we can write for :L

(SI-15)
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where , , , .  Note vz zLk m h
2 2 2 2

1
12 2

L zL
b
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m m

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h h 2 2 2 2
2

22 2
L zL

b
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m m
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h h 2 2 2 2

2 2
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h h

that  is normalized on unit flux of probability in the left metal.  L

The function  of an electron after SPP emission is calculated for the potentialR

(SI-16) 
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In the region  (right metal), the wave function  includes the wave  2qwz l b  R zRik ze

(normalized on unit density of probability) where .  In the QW 2
2 2

22 sp
zR zL

mm eV
k k


  

h

h h

region ( ), the function  can be obtained (as in optics in consideration of light 0 qwz l  R

passing through Fabry-Perot) by summing waves in this region, which arise due to the tunneling 

of the incident wave through the barrier 2 with the coefficient , and subsequent multiple  2t

reflections from the barriers 1 and 2 with the coefficients  and , correspondingly: 1r
 2r
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(SI-17) 
 

   
     
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qw2 1 21
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where .  For , the wave function .  
2 2 2 2

2 2
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  
h h
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R qwz A r e  

   

The above formulas for  are general, and valid both for an electron at resonance and off R

resonance with a level in the QW.  If the electron energy  is close to the QW’s R L spE E   h

level ,  can be written approximately as QWE R

(SI-18) 
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where ;  is the width of 2 2

1 22

2 1R R R QWb ires
qw

res

E E
A e

E
 



 
  
         

 2 22 2R b
res R qwE e E U    

the level in the QW.  Note that here and below we assume that electron is in resonance with 

fundamental energy level of the QW.  
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SI-4. Elastic and inelastic current density in structures with resonant 

tunneling

Using formulas 

(SI-19)   
1 1

2 3
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where  is the energy of the incident electron, we get for the current densities due to 2v 2z zE m

inelastic tunneling 

(SI-22) , 1 12 3 exp 2
2 2

res res
QW qwinel res nonresF z F z

DB res z
F F

E Um E EJ e E b  
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and elastic tunneling

(SI-23)
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where , ,  ( ), res
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.  Assuming, that in        
21

1 1QW z sp QW QW z sp QWE E E E E E   
              h h

(SI-23),  and , we can estimate the quantum efficiency as res
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