In-situ Optical Measurement of the Rapid Li Intercalation and Deintercalation Dynamics in Colloidal 2D Layered TiS₂ nanodiscs

Jiageng Ren,[†] Luis E. Camacho-Forero,[‡] Daniel Rossi,[†] Yerok Park[†] Perla B. Balbuena,[‡] Dong

Hee Son^{*,†}

⁺Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States

[†]Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States

• Fabrication of TiS₂ film

The colloidal TiS_2 nanodiscs were deposited by partially submerging the ITO/glass substrate to colloidal TiS_2 nanodisc solutions dispersed in chloroform for 12 hours. Due to the absence of strong coordination of the surfactant to the polar basal planes of TiS_2 nanodiscs, they readily adsorb on the polar surface of ITO. ITO/glass substrate was rinsed with ethanol and dried with N₂ before use.

• Optical measurement of Intercalation

Light source: Tungsten halogen light source

Reference: ITO/glass substrate without TiS_2 immersed in the cuvette containing the same solvent (acetonitrile) and electrolyte (LiClO₄)

- With CCD spectrometer: The reference data, R(λ), was taken before making the measurement on sample S(λ,t), and the absorbance A(λ,t) was obtained by taking from -log (S(λ,t)/R(λ)).
- (2) With dispersive spectrometer at near-IR: The spectrometer was setup in dual-beam configuration and the signals from reference, $R(\lambda)$, and sample, $S(\lambda,t)$, were acquired simultaneously using two amplified InGaAs photodiodes as the detector.

• Electrode potential dependence of ΔA(t)/A

Figure S1. Dependence of $\Delta A(t)/A$ on the reference electrode potential measured in TiS₂ nanodiscs with r=250 nm. The potential is with respect to Ag pseudo reference electrode. -1.1 V for intercalation was chosen since it shows the saturation of the modulation amplitude of $\Delta A(t)/A$ for intercalation.

• Absence of contribution to $\Delta A(t)/A$ from the substrate

Figure S2. Absorption value of ITO/glass at 600 nm at -1.1 V and 0.3V vs Ag pseudo reference electrode. ITO/glass substrate has no contribution the measured $\Delta A(t)/A$.

• Biexponential fitting of $\Delta A(t)/A$

The $\Delta A(t)/A$ data was fitting through biexponential model to extract time components.

Figure S3. Fitting of $\Delta A(t)/A$ with bi-exponential model for *r*=80 nm sample at (a) -1.1V and (b) 0.3V.

Cycle	Intercalation (-1.1V)				Deintercalation (0.3V))
No.	A ₁	$\tau_1(s)$	A ₂	$\tau_2(s)$	A ₁	$\tau_1(s)$	A ₂	$\tau_2(s)$
1	0.87	1.9	0.13	20	0.85	1.0	0.15	5.6
2	0.94	2.0	0.06	132	0.92	1.4	0.08	8.9
3	0.96	1.8	0.04	39	0.93	1.2	0.07	11
4	0.96	2.0	0.04	59	0.92	1.2	0.08	11
5	0.94	2.0	0.06	42	0.91	1.3	0.09	10
6	0.92	2.1	0.08	26	0.91	1.3	0.09	16
7	0.91	2.5	0.09	30	0.92	1.7	0.08	22
8	0.89	2.5	0.11	26	0.89	1.7	0.11	28
9	0.87	2.8	0.13	29	0.89	2.1	0.11	28
10	0.85	2.8	0.15	33	0.89	2.4	0.11	32

For TiS₂ with r=80 nm

For TiS_2 with r=250 nm

Cycle	Intercalation (-1.1V)				Deintercalation (0.3V)			
No.	A ₁	$\tau_1(s)$	A ₂	$\tau_2(s)$	$A_1(\%)$	$\tau_1(s)$	A ₂	$\tau_2(s)$
1	0.75	3.8	0.25	1.2 ¢ 10 ²	0.84	2.4	0.16	50

2	0.88	4.1	0.12	64		0.81	2.3	0.19	43
3	0.89	4.7	0.11	36		0.81	2.8	0.19	46
4	0.86	5.2	0.14	37		0.80	3.0	0.20	44
5	0.84	5.7	0.16	51		0.78	3.1	0.22	43
6	0.79	6.7	0.21	50		0.78	3.7	0.22	46
7	0.78	7.4	0.22	52		0.81	5.1	0.19	48
8	0.76	8.6	0.24	53		0.78	4.9	0.22	48
9	0.71	8.9	0.29	52]	0.76	5.6	0.24	47
10	0.68	9.6	0.32	55		0.75	6.2	0.25	50

Table S1. Fitting parameter of $\Delta A(t)/A$ with biexponential function. The amplitudes (A₁ and A₂) are the fractional amplitudes.

• Estimation of effective diffusion coefficient (D) of Li in TiS₂ nanodiscs.

The normalized experimental data of $|\Delta A(t)/A|$ was fit with the following expression of C(t,r), which represents average concentration of Li normalized to its terminal concentration in a cylinder of radius *r* under 2-dimensional radial diffusion condition.¹

$$C(t,r) = 1 - \sum_{n=1}^{\infty} \frac{4}{a_n} \exp\left(-D\frac{{a_n}^2}{r^2}t\right)$$

For this fitting, the following 12 leading terms for a_n were used in the summation, which are the solutions of the Bessel function of the first kind $J_0(x)$.

2.405, 5.520, 8.654, 11.1975, 14.9309, 18.0711, 21.2116, 24.3525, 27.4935, 30.6346, 33.7758, 36.9171

• Calibration of Ag wire pseudo-reference

Figure S4. Ag pseudo-reference electrode calibration. The working electrode was a glassy carbon electrode, with a Pt wire as the counter electrode. The electrolyte was 1β 10⁻⁴ M ferrocene in 0.1 M LiClO₄ acetonitrile solution. The average of the oxidation and reduction peak in 14 cycles as shown was around 0.25 V. Given that the potential of Fc⁺/Fc in acetonitrile is 0.62 V versus standard hydrogen electrode (SHE),² the pseudo-reference of Ag electrode was around 0.37 V versus SHE.

Li_xTiS₂ model and respective cell parameters

Figure S5. $\text{Li}_x \text{TiS}_2$ model. (a) top view of $2 \times 2 \times 2$ supercell $\text{Li}_x \text{TiS}_2$ bulk; Li cannot be seen because they are in the same plane as Ti atoms. b) All different configurations for $\text{Li}_x \text{TiS}_2$. Gray, yellow, and pink spheres represent Ti, S, and Li atoms, respectively.

		Supercell	Ave. per unit cell*		
X	a (Å)	b (Å)	c (Å)	a _u (Å)	c _u (Å)
0.00	6.792	6.792	11.411	3.396	5.705
0.25	6.777	6.784	11.783	3.390	5.892
0.50-(1)	6.792	6.792	11.827	3.396	5.914
0.50-(2)	6.766	6.786	12.183	3.388	6.092
0.50-(3)	6.779	6.787	12.135	3.392	6.068
0.75	6.791	6.798	12.188	3.397	6.094
1.00	6.806	6.806	12.221	3.403	6.110

 $a_u = (a + b)/4; a_u = c/2$

Table S2. Optimized lattice parameters (a, b, and c) for different ratios and configurations of Liintercalated in TiS₂ (Li_xTiS₂) in the supercell $2 \times 2 \times 2$. a_u and c_u stand for the equivalent lattice parameters per unit cell.

Figure S6. Complex dielectric function parallel (${}^{\varepsilon_{\parallel}}$) and perpendicular (${}^{\varepsilon_{\perp}}$) to the *c*-axis of TiS₂. Real and imaginary part of the dielectric function, (a, b) ${}^{\varepsilon_1}$ and (c, d) ${}^{\varepsilon_2}$ respectively, as a function of *x* in Li_xTiS₂. Arrows indicate the change of intensity at the main peaks as the concentration of lithium increases.

Figure S7. Parallel (out-of-plane) component of the imaginary part of refractive index $(^{k})$ as a function of x in Li_xTiS₂. Arrow indicates change of intensity at the main peak as the concentration of lithium increases.

(1) Crank, J. Diffusion in a cylinder. In *The Mathematics of Diffusion*; Oxford University Press: Bristol, England, **1975**; pp 73-74.

(2) Pavlishchuk, V. V.; Addison, A. W. Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. *Inorg. Chim. Acta* **2000**, *298*, 97-102.