Electronic Supplementary Material (ESI)

Hierarchically porous Fe-N-C derived from covalent-organic material

as highly efficient electrocatalyst for Oxygen Reduction⁺

Quan Zuo,^a Pingping Zhao,^a Wei Luo^{a,b,c*} and Gongzhen Cheng^{a*}

Fig. S1. SEM images of the catalysts pyrolysis at different target temperatures. (a, b) FeNC-800 (c, d) FeNC-1000

Fig. S2. TEM images of (a, b) FeNC-800 (c, d) FeNC-1000

Fig. S3. The high-resolution N 1s and Fe 2p spectrum of (a, c) FeNC-800, (b, d) FeNC-1000

Fig. S4. Pore size distribution of FeNC-based catalysts

Fig. S5. Steady-state polarization curves of FeNC-based catalysts.

Fig. S6. SEM images of the FeNC-900 catalyst after accelerated durability test: (a) in 1M KOH solution, (b) in 1M $HCIO_4$ solution.

Fig. S7. Methanol-tolerance evaluation of FeNC-900 tested by the current–time chronoamperometric responses at 0.6 V versus RHE in O $_2$ -saturated (commercial 20% Pt/C is used for comparison) in 0.1 M KOH solution. The arrow represents the addition of 3 M methanol into the electrolyte.

Fig. S8. Methanol-tolerance evaluation of FeNC-900 tested by the current–time chronoamperometric responses at 0.6 V versus RHE in O $_2$ -saturated (commercial 20% Pt/C is used for comparison) in 0.1 M HClO₄ solution. The arrow represents the addition of 3 M methanol into the electrolyte.

Fig. S9. (a) XRD and (b) Steady-state polarization curves of ORR of catalysts in 0.1 M KOH solution from different metal.

Fig. S10. SEM images of the catalysts (a) CoNC-900 and (b) NiNC-900.

Fig. S11. (a) N₂ adsorption-desorption isotherms of CoNC-900 and NiNC-900 catalyst, (b) Pore size distribution of CoNC-900 catalyst, (C) Pore size distribution of NiNC-900 catalyst.

Fig. S12. The high-resolution N 1s and Co 2p (Ni 2p) spectrum of (a, c) CoNC-900, (b, d) NiNC-900

Fig. S14. XRD of CTF

Fig. S15. (a) XRD and (b) Steady-state polarization curves of ORR of catalysts in 0.1 M KOH solution from different precursors.

Fig. S16. SEM images of the catalysts (a) TTF-900, (b) Fe-TPN-900 and (c) Fe-CTF-900.

Table S1. (Comparison	of ORR	catalytic	performances	in	alkaline	solution	between	FeNC-900	and	other	noble-
metal-free	electrocatal	ysts repo	orted pre	viously.								

Catalyst	Onset potential	Half-wave potential	The diffusion-limited	Ref.
	(V vs. RHE)	(V vs. RHE)	current density (mA/cm ²)	
FeNC-900	1.00	0.88	6.25	This work
Fe-N/C-800	0.98	0.81	4.81	[1]
Fe-N/C-800	0.92	0.81	6.06	[2]
Fe-N-C	0.95	0.86	6.60	[3]
Fe-N/G	0.87	0.78	5.21	[4]
Co-N-HPC	0.91	0.83	5.00	[5]
N:C-MgNTA	0.89	0.75	5.70	[6]
NCNTFs	0.95	0.87	5.30	[7]
NPC-F	0.94	0.84	5.50	[8]
Fe ₂ N/N-GAs-20	1.02	0.88	4.80	[9]

pPMF-800	1.05	0.88	6.20	[10]

Catalyst	Onset potential	Half-wave potential	The diffusion-limited	Ref.
	(V vs. RHE)	(V vs. RHE)	current density (mA/cm2)	
FeNC-900	0.85	0.72	5.95	This work
Fe-N/C-800	0.80	0.68	6.09	[2]
Fe2N/N-GAs-20	0.82	0.65	3.79	[9]
pPMF-800	0.89	0.71	6.10	[10]
Fe/Co-CMP-800	0.88	0.76	4.70	[11]
Co-N-C	0.85	0.76	5.90	[12]
Co-Zn-ZIF/GO-800	0.85	0.70	4.20	[13]
H–Fe@N–C/RGO	0.89	0.67	7.80	[14]
Fe-N/C-900	0.58	0.40	5.78	[15]
	(V vs. Ag/AgCl)	(V vs. Ag/AgCl)		

Table S2. Comparison of ORR catalytic performances in acid solution between FeNC-900 and other noble-metalfree electrocatalysts reported previously.

Notes and references

- 1 W. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang and S. Chen, J. Am. Chem. Soc., 2015, 137, 5555–5562.
- 2 L. Lin, Q. Zhu and A. Xu, J. Am. Chem. Soc., 2014, 136, 11027–11033.
- 3 J. Sanetuntikul and S. Shanmugam, Nanoscale, 2015, 7, 7644–7650.
- 4 Q. Lai and Q. Su, ACS Appl. Mater. Inter., 2015, 7, 18170–18178.
- 5 M. Dou, D. He, W. Shao, H. Liu, F. Wang and L. Dai, Chem. Eur. J., 2016, 22, 2896–2901.
- 6 D. Eisenberg, W. Stroek, N. J. Geels, C. S. Sandu, A. Heller, N. Yan and G. Rothenberg, *Chem. Eur. J.*, 2016, **22**, 501–505.
- 7 B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou and X. Wang, *Nature Energy*, 2016, 1, 1–8.
- 8 Z. Xu, X. Zhuang, C. Yang, J. Cao, Z. Yao, Y Tang, J. Jiang, D. Wu and X. Feng, Adv. Mater., 2016, 28, 1981–1987.
- 9 L. Liu, X. Yang, N. Ma, H. Liu, Y. Xia, C. Chen, D. Yang and X. Yao, Small, 2016, 12, 1295–1301.

10 W. Yang, X. Yue, X. Liu, L. Chen, J. Jia and S. Guo, Nanoscale, 2016, 8, 959–964.

- 11 S. Br"uller, H. Liang, U. I. Kramm, J. W. Krumpfer, X. Feng and K. M"ullen, *J. Mater. Chem. A*, 2015, **3**, 23799–23808.
- 12 B. You, N. Jiang, M. Sheng, W. S. Drisdell, J. Yano and Y. Sun, ACS Catal., 2015, 5, 7068–7076.
- 13 J. Wei, Y. Hu, Y. Liang , B. Kong, J. Zhang, J. Song, Q. Bao, G. P. Simon, S. P. Jiang and H. Wang, *Adv. Funct. Mater.*, 2015, **25**, 5768–5777.
- 14 J. Wang, G. Wang, S. Miao, J. Liab and X. Bao, *Faraday Discuss.*, 2014, **176**, 135–151.
- 15 M. Yang, H. Chen, D. Yang a, Y. Gao and H. Li, J. Power Sources, 2016, **307**, 152–159.