Supporting information

Size Dependent Electrochemical Detection for Trace Heavy Metal Ions Based on Nano-Patterned Carbon Sphere Electrodes

Lu-Hua Zhang, Wen-Cui Li, Dong Yan, Hua Wang, and An-Hui Lu*

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of

Technology, Dalian 116024, P. R. China. E-mail: anhuilu@dlut.edu.cn. Tel/Fax: +86-411-84986112

Part I:

Fig. S1 (a) Photograph of the dispersed solution of HCSs. (b) Representative DLS curves of the HCS-188-44. (PDI=polydispersity index).

Fig. S2. SEM images of the self-assembled HCSs.

Fig. S3 Nyquist plots of HCS-188-55 modified GCE. Solid red line, measurement data; dot green line, fitting data.

Fig. S4 Schematic illustration of electron transfer pathways.

Fig. S5. N_{2} sorption isotherms of HCS-x-y samples. Note: the isotherms of samples HCS-188-55, HCS-188-44, and HCS-188-33 are vertically offset by $10,20,30 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$, respectively.

Table S1. Textural properties of HCS-x-y samples ${ }^{\text {a }}$

Sample	$\mathrm{S}_{\text {BET }}$ $\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	$\mathrm{S}_{\text {mic }}$ $\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	$\mathrm{V}_{\text {total }}$ $\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$	$\mathrm{V}_{\text {mic }}$ $\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$
HCS-265-33	588	537	0.30	0.24
HCS-188-33	607	541	0.32	0.25
HCS-188-44	603	554	0.32	0.26
HCS-188-55	600	544	0.31	0.25
HCS-188-79	580	531	0.25	0.23

${ }^{a} S_{\text {BET }}=$ specific surface area calculated by the BET method, $\mathrm{S}_{\text {mic }}=$ micropore surface area calculated by the $\mathrm{t}-$ plot method, $\mathrm{V}_{\text {total }}=$ total pore volume at $\mathrm{P} / \mathrm{P}_{0}=0.90$, and $\mathrm{V}_{\text {mic }}=$ micropore volume calculated by the t-plot method.

Table S2. Synthesis conditions and structure parameters of HCSs

Sample	$\mathrm{D}_{\mathrm{PS}}{ }^{\mathrm{a}}$	Phenol	HMT	$\mathrm{T}_{\mathrm{HCS}}{ }^{\mathrm{b}}$	$\mathrm{D}_{\text {void }}{ }^{\mathrm{c}}$
	(nm)	(mg)	(mg)	(nm)	(nm)
HCS-265-33	280	141	105	32	265
HCS-188-33	200	188	140	33	188
HCS-188-44	200	235	175	44	188
HCS-188-55	200	282	210	55	188
HCS-188-79	200	376	280	79	188

${ }^{a} \mathrm{D}_{\mathrm{PS}}$: the diameter of PS template. ${ }^{\mathrm{b}} \mathrm{T}_{\mathrm{HCS}}$: the shell thickness of $\mathrm{HCSs} .{ }^{\mathrm{c}} \mathrm{D}_{\text {void }}$: the void diameter of HCSs.

Part II:

The contact points between HCSs and GCE can be calculated as following:

We assume that HCSs have hexagonal close-packed structure on the surface of GCE. When
HCS-188-44 modified GCE, the number of contact points between HCS and GCE :
$n=\frac{S_{G C E}}{a_{u}}=\frac{4 \pi R_{G C E}^{2}}{\sqrt{3} R_{H C S} D_{H C S}}=\frac{4 \pi\left(2 \times 10^{-3}\right)^{2}}{2 \sqrt{3}\left(138 \times 10^{-9}\right)^{2}}=7.62 \times 10^{8}$

Where n is the number of contact points between HCS and GCE, $\mathrm{S}_{\mathrm{GCE}}$ is the area of GCE; a_{u} is the area of each unit; $\mathrm{R}_{\mathrm{GCE}}$ is the radius of GCE; $\mathrm{R}_{\mathrm{HCS}}, \mathrm{D}_{\mathrm{HCS}}$ is the radius and diameter of HCSs.

