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The XRD peaks of MOF-253-Fe in Figure S1 correspond well to that of MOF-253 with only a slightly
shifting which may be originated from a disorder in the crystal structure. X-ray photoelectron
spectroscopy (XPS) analysis was performed to confirm the chemical state and coordination environment
of Fe atom upon insertion within the framework. The high resolution N1s spectra of MOF-253-Fe in —
Figure S2 demonstrate the presence of metal N fitting binding energies of 399.6 eV.!: 2 The binding
energies of the Fe2p (around 711 eV) in Figure S2 could be ascribed to the N-coordinated Fe** or Fe?*.3-4

These features are all attributed to the binding of FeCl, to pyridine, which may lead to Fe-2,2’ -
bipyridine distribution throughout of MOF-253.
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Figure S1. XRD patterns of MOF-253 and MOF-253-Fe.
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Figure S2. High-resolution Fe 2p and N 1s XPS spectra of MOF-253-Fe.



2] MOF-253
= < |[|C
> 3
= 3
g 2
s {2 NGOG a
0 Illllllllllll']llllllIll]IIIIlll'Il]'l'lII"IlII'I[I'I'III'III'I]III'I]III"lllilllllllllllllli"llllllllll"llll'l
0 2 4 6 8 10 12 14 16 18 keV
4] MOF-253-Fe
> 1 Y s 3
w - s -
] - » 2l S
& 2+ 4
: *
ERIY m @ ;
N X% ¥ R P [ 2 b
0 ]l[ll[IllIlllIIll'IllllII]lIIl]IIlI[lIIIIlIYll'IIIIIIIIIII'IIIli']l[lllilli[lilIlll'il"i']l[[l]'lllll
0 2 4 6 8 10 12 14 16 18 keV
3 MOF-253-Fe-Phen
1@
2=
-
¥
g -
1
11~ o l
NI 2 ) (XK [2] [
0 lli[lIllllllI'IlII]I!IIIIlIl]lIlIllIl']il(!]IIIIIIIIl|lIIIIKIII]IIIIIIIII[lIlIl'Ill]IlIIIIYI']llI'
1 2 3 4 5 6 7 8 9 keV

Figure S3. EDX spectrum of MOF-253, MOF-253-Fe and MOF-253-Fe-Phen.

MOF-253 (Al(OH)(bpydc) (Anal. Calcd for C;,H;AIN,Os) is synthesized according to the procedure
reported in literature. (For detailed synthetic procedures, please refer to the Experimental part.) EDS
analysis showed that the molar ratio of AI/N was 1:2.25 which is close to the theoretical value of 1:2.

After MOF-253 is synthesized, it is modified with FeCl, in acetonitrile to form Fe incorporated
compound which is named as MOF-253-Fe. The compounds AlI(OH)(bpydc) (3.5 mmol) and FeCl,
(3.5 mmol) were stirred and then collected by filtration and washing with acetonitrile. EDS
analysis showed that the molar ratio of Fe/Al was 0.64:1, matching well with the atomic ratio of 0.7:1
measured by inductively coupled plasma optical emission spectrometry (ICP-OES) analysis (ESI). EDS
analysis measure on the same sample showed that the molar ratio of Al/N was 1:2.12.



The above obtained dry MOF-253-Fe, mixed with 1,10-Phenanthroline (7 mmol) in acetonitrile was
stirred, followed by filtration and dried under vacuum. The formed MOF-253-Fe-phen composite was
also analysed by EDS. The molar ratio of Fe/Al was 0.53:1 which is a little bit smaller than that of MOF-
253-Fe. This is because of the possible dissolution of some of Fe species into solutions after the
subsequent stirring with 1,10-Phenanthroline. In our expectation, after the addition of 1,10-
Phenanthroline, Fe which was chelated with the ligand of MOF-253 would chelate with two portion of
1,10-Phenanthroline. Thus, if the molar ratio of Fe/Al is 0.53:1, plus with the nitrogen atoms in the ligand,
Fe/N ratio of the as-synthesized compound should be around 0.53: (0.53*4+2) = 0.53:4. EDS analysis
showed that the molar ratio of Fe/Al/N in the formed compound was 0.53:1:3.5, which match well with
the above calculated data.
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Figure S4. XRD patterns of MOF-253-Fe-phen-C (a), MOF-253-(Fe-Phen)-C (b).

Fe K

CukK

L

Mo ki e ol bl Bl i i it ahml“nd...w: wne .h‘.”..l T T e

0.90 1.80 270 3.60 450 540 630 720 8.10 9.00 KeV

10 nm

Figure S5. EDX spectrum of Fe;C nanoparticles which are wrapped by carbon graphitic carbon layers in
MOF-253-Fe-phen-C.
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Figure S6. Nitrogen adsorption/desorption isotherms and the corresponding pore size distribution curves
for a), MOF-253, b) MOF-253-Fe-Phen-C, c), MOF-253-(Fe-phen)-C.
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Figure S7. XPS survey scan of MOF-253-Fe-phen-C and MOF-253-(Fe-Phen)-C (a), high-resolution N 1s
XPS spectra of MOF-253-(Fe-Phen)-C (b), high-resolution Fe 2p XPS spectra of MOF-253-(Fe-Phen)-C

(c).
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Figure S8. RDE voltammograms of MOF-253-Fe-phen-C pyrolyzed at different temperatures in O,-
saturated 0.1 M KOH (a), RDE voltammograms of MOF-253-Fe-phen-C pyrolyzed by heating the
mixtures containing different molar ratio of MOF-253-Fe and 1, 10-Phenanthroline at 900 °C and HCI
etching in O,-saturated 0.1 M KOH. Note, 1:0 means that no 1, 10-Penanthroline is added in MOF-253-Fe

precursor (b).

Figure S9. SEM images (a) MOF-253, (b) MOF-253-Fe, (c) MOF- 253-Fe-Phen, (d) MOF-253-Fe-Phen-C,
(e) MOF-253-(Fe-Phen), (f) MOF-253-(Fe-Phen)-C.
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Figure S10. Cyclic voltammograms of Pt/C in O,-saturated 0.1 M KOH and HCIO,.

Table S1. Summarized iron contents by ICP-OES measurements.

Samples MOF-253-Fe- MOF-253- MOF-253-Fe- MOF-253-
phen (Fe-Phen) phen-C (Fe-Phen)-C
Fe wt.% 5.50 0.63 0.77 0.27

Table S2. The XPS surface species analyses of MOF-253-Fe-phen-C and MOF-253-(Fe-Phen)-C
determined by XPS.

Samples Graphitic Metal Pyridinic
nitrogen nitrogen nitrogen
atom % atom % atom %

MOF-253-Fe-phen-C 60.68 22.31 17.01

MOF-253-(Fe-Phen)-C 42.05 24.76 33.19

Table S3. Elemental compositions of MOF-253-Fe-phen-C and MOF-253-(Fe-Phen)-C determined by
elemental analysis.

Samples Cwt. % Hwt. % N wt. %
MOF-253-Fe-phen-C 53.53 0.99 1.34
MOF-253-(Fe-Phen)-C 47.82 1.766 0.68




Table S4. Electrocatalytic activity of carbon materials derived from pyridine as nitrogen source.

Catalyst Electrolyte Onset Reference
potential, V
[Zn(bpdc)DMA] -DMF /C 0.1 M KOH -0.14 ( SCE) 5
4,4’-bipyridine and 0.1 M KOH 0.98 ( RHE) 6
FeCl;-6H,0 /C
Pyridine and CoSO,-7H,0 /C 0.1 M KOH 0.014 ( SCE) 7
Current work 0.1 M KOH 0.98 ( RHE)
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