## **Electronic Supplementary Information**

## Partial hydrogenation induced interaction in a graphene-SiO<sub>2</sub> interface: Irreversible modulation of device characteristics

<sup>1\*</sup>Takuya Iwasaki, <sup>1\*</sup>Manoharan Muruganathan, <sup>1</sup>Marek E. Schmidt <sup>1,2,3</sup>Hiroshi Mizuta

Transport Measurements of Monolayer and Bilayer GFETs



Fig. S1 Resistivity  $\rho$  versus back-gate voltage  $V_g$  characteristics at 300 K of the monolayer GFET before annealing (black), after vacuum annealing (red), and after hydrogen annealing with the vacuum annealing treatment (blue), respectively.



Fig. S2 Resistivity  $\rho$  versus back-gate voltage  $V_g$  characteristics at 300 K of the bilayer GFET before annealing (black), after vacuum annealing (red), and after hydrogen annealing with the vacuum annealing treatment (blue), respectively.

Figures S1 and S2 show the resistivity ( $\rho$ ) of the monolayer and bilayer GFETs as a function of back-gate voltage ( $V_g$ ) measured at room temperature for all experiment steps, respectively. Before annealing, almost GFETs including monolayer and bilayer devices show the charge near CNP in the positive  $V_g$  at 300 K. The p-doping effect is caused by physisorbed O<sub>2</sub> and H<sub>2</sub>O molecules onto the surface<sup>1,2</sup> or the water layer at the interface between graphene and SiO<sub>2</sub>.<sup>1,3</sup> However, some devices randomly exhibit the CNP in the negative side or near 20 V, which might be attributed to unintentional contaminations or impurities. After vacuum annealing, a negative shift of the CNP is observed in the almost GFETs. This result can be ascribed to the removal of p-type dopants from the graphene

surface and the interface of graphene/SiO<sub>2</sub><sup>4</sup> and charge transfer from SiO<sub>2</sub> to graphene.<sup>5</sup> After hydrogen annealing and the vacuum annealing treatment, the CNP is found around  $V_g \sim 0$  V and the overall resistivity increases as well as the trilayer GFETs. The observation of the CNP close to 0 V indicates that either p- or n-doping level was reduced. According to our DFT calculation, the small shift of the CNP and the irreversible reduction of the overall conductivity can be attributed to a decrease in distance between the graphene and the SiO<sub>2</sub> substrate due to partial hydrogenation at the SiO<sub>2</sub> surface.

**DFT Calculations** 



Fig. S3. Atomic configuration side view of the geometrically optimized structure of monolayer graphene on Quartz  $SiO_2$  (0001) surface: (a) without any defects, and (b) one of the silicon dangling bonds in (a) is terminated by a hydrogen with GGA-RPBE exchange correlation functionals with DFT-D3 corrections; (c) without any defects, and (d) one of the silicon dangling bonds in (a) is terminated by a hydrogen with LDA exchange correlation functionals.



Fig. S4. PDOS plot of the monolayer graphene of the geometrically optimized structures shown in Fig. S3 with exchange correlation functionals of GGA-RPBE with DFT-D3 corrections and LDA.

Monolayer graphene/SiO<sub>2</sub> system simulations were done with and without hydrogenation at the graphene/SiO<sub>2</sub> interface. Details of the simulation method are given in the main text. To analysis the interaction between monolayer graphene and SiO<sub>2</sub> substrate, DFT calculations were done with revised Perdew-Burke-Ernzerhof parametrization of the GGA (GGA-RPBE)<sup>6</sup> functional with the Grimme DFT-D3 dispersion and LDA functional. For DFT-D3 calculation, distance between the graphene and the top SiO<sub>2</sub> surface is 3.207 Å, which is reduced to 2.547 Å

when a single dangling bond of a Si atom is terminated by the hydrogen (Figs. S3(a) and (b)). In the case of For the LDA functional, optimized distance between the graphene and the top of SiO<sub>2</sub> surface is 2.852 Å. This value is lower than interlayer distance of graphite. When a single dangling bond of a Si atom is terminated by the hydrogen then strong Si-C bond is formed with 1.9 Å bond length (Figs. S3(c) and (d)). This leads to a high density of defect states around the Fermi level and the band-gap opening at low and higher energies (Fig. S4(d)).

## REFERENCES

- 1. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, *Nat. Mater.*, 2007, 6, 652-655.
- 2. Y. Sato, K. Takai and T. Enoki, *Nano Lett.*, 2011, **11**, 3468-3475.
- 3. H. Komurasaki, T. Tsukamoto, K. Yamazaki and T. Ogino, J. Phys. Chem. C, 2012, 116, 10084-10089.
- 4. K. Kumar, Y. S. Kim and E. H. Yang, *Carbon*, 2013, **65**, 35-45.
- 5. H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo and P. C. Eklund, ACS Nano, 2008, 2, 2037-2044.
- 6. Y. Zhang and W. Yang, *Phys. Rev. Lett.*, 1998, **80**, 890.