Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Flexible Transparent Colorimetric Wrist Strap Sensor

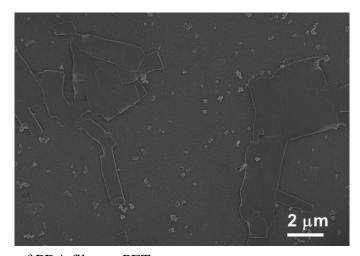


Fig. S1 SEM image of PDA film on PET.

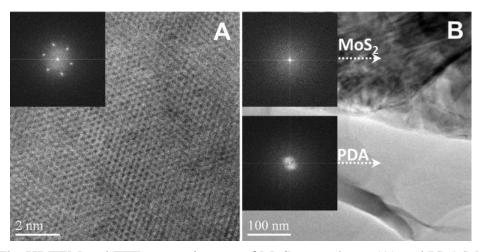


Fig. S2 The HRTEM and FFT pattern images of MoS₂ nanosheets (A) and PDA/MoS₂ (B).

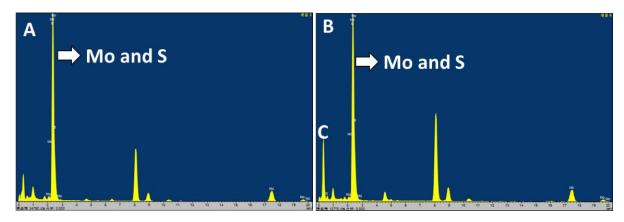


Fig. S3 EDS spectra of MoS_2 (A) and PDA/ MoS_2 (B).

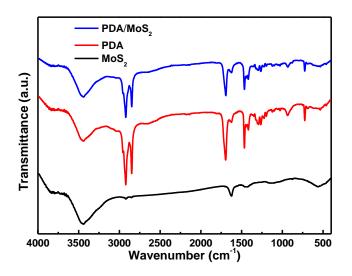


Fig. S4 FTIR of MoS₂, PDA, and PDA/MoS₂ composite.

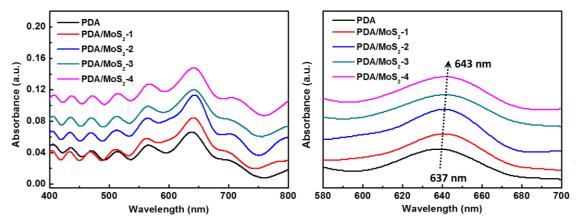
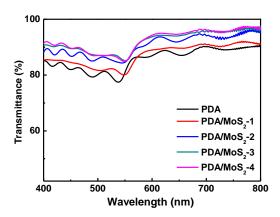



Fig. S5 UV-vis spectra of PDA, and PDA/MoS $_2$ films.

Fig. S6 Transmittance spectra of PDA, PDA/MoS₂-1, PDA/MoS₂-2, PDA/MoS₂-3, and PDA/MoS₂-4 films after exposed to DMF vapor.

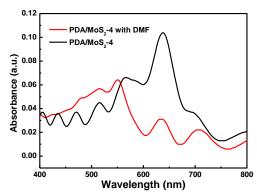


Fig. S7 UV-vis spectra of PDA/MoS₂-4 in the absence and presence of DMF vapor.

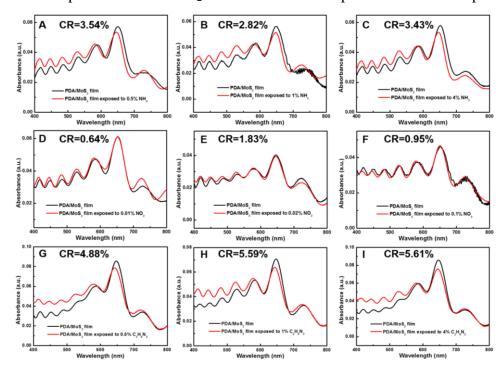


Fig. S8. UV-vis spectra of PDA/MoS₂ film exposed to NH₃ (A, B, C), NO₂ (D, E, F), and

 $C_2H_8N_2$ (Ethylenediamine) (G, H, I). The concentrations of NH_3 and $C_2H_8N_2$ were 0.5%, 1%, and 4%. The concentrations of NO_2 were 0.01%, 0.02%, and 0.1%.

We have conducted the detection of N-containing gas species including NH₃, NO₂, C₂H₈N₂ (Ethylenediamine) using PDA/MoS₂ film sensor. The detecting procedures were the same with that for DMF vapor. It was found that no obvious color changes were observed. The UV-vis spectra of PDA/MoS₂ film before and after exposed to gases were collected. Figure S8 indicated that PDA/MoS₂ film showed *CR* value less than 6% for NH₃, NO₂, and C₂H₈N₂. As proven by previous research, the colorimetric transition of PDA was generally ascribed to the deformation of PDA side chains by the interaction with suitable organic solvents (Davis, B. W.; Burris, A. J.; Niamnont, N.; Hare, C. D.; Chen, C.-Y.; Sukwattanasinitt, M.; Cheng, Q., Langmuir 2014, 30, 9616-9622). For NH₃, NO₂ gases, and C₂H₈N₂, despite of their affinity to MoS₂, their weak interaction with PDA failed to induce the color change of PDA.