Supporting information

Title: Defining the copper binding aptamotif and Aptamer Integrated Recovery Platform (AIRP)

Simranjeet Singh Sekhon¹, Sang-Hee Lee¹, Kyeong-Ah Lee¹, Jiho Min², Byung-Tae Lee³, Kyoung-Woong Kim³, Ji-Young Ahn^{1, †} and Yang-Hoon Kim^{1,*}

¹ School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea

² Department of Bioprocess Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju 54896, South Korea

³ School of Earth Sciences and Environmental Engineering, Gwangju Institute Sciences and Technology (GIST), 123 Cheomdan-gwagiro, 500-712, South Korea

Keyword: copper binding aptamotif, Aptamer Integrated Retrieval Platform (AIRP), copper retrieval, reusable copper binding aptamer, mine drainage

*,†Correspondence and requests for materials should be addressed to Y.-H. K

(kyh@chungbuk.ac.kr) and J.-Y. A (jyahn@chungbuk.ac.kr)

Figures and Table

Figure S1. Copper recovery experimental steps

Figure S2. The binding affinity test by SPR

Table S1. Sequence analysis of the copper-aptamer candidates and their copper-binding affinities, as determined from the direct coupling SPR assay.

Table S2. The binding affinity test of Cu-A2

Table S3. The binding affinity values of Cu-A1, Cu-A2, Cu-A3, and Cu-A4

Experimental steps

- (1) Resin preparation:
 - Gently mix the streptavidin agarose resin (Thermo scientific, USA)
 - Using wide-mouth yellow pipette-tip, transfer 200 µL of agarose resin slurry to 1.5 mL microtubes.
- (2) Remove supernatant. The resin was then washed twice with 1 ml of the selex buffer.
- (3) Aptamer preparation in 1.5 ml reaction tube:
 - 2 mg of the biotinylated aptamer in 400 μ L of the selex buffer
 - Applied drop-by-drop on to the streptavidin agarose resin
 - Incubated for 1 h on thermomixer (Eppendorf, Germany) at 1300 rpm.
- (4) Correct the supernatants by extracting supernatant and repeat aptamer binding in a single tube.

- (5) After washing, 1 ml of copper solutions were transferred to both streptavidin-agarose resins with and without aptamer and incubated for 2 h at 25 °C in 1.5 ml reaction tube (final concentrations, 1, 3, 5, 7, 10, 30, 50, 70, 100, 150 and 300 mg/L).
- (6) After centrifugation at 13000 rpm for 1 min, the copper content in supernatant fraction was measured by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS, Agilent 7500ce, Agilent, USA).

Figure S2. The binding affinity test by SPR

The binding affinity of Cu-A2 was analyzed by SPR using Biacore 3000 Instrument. All data sets were listed in **Supporting information Table 2**. Random initial library was also introduced as a control.

Table S1. Sequence analysis of the copper-aptamer candidates and their copper-binding affinities, as determined from the direct coupling SPR assay.

Name		Affinity	Random	Identical
	Aptamer sequences (N40)	(K _{D,} M)	sequences size (bp)	sequences
Cu _A1	GGTGTGACTGAGTAACTCACTCCAACCCCTGGAGTGGGAT	$7.88 \pm 1.41 \times 10^{-11}$	40	2
Cu _A2	CCCAGGCTTGGATAGCACATTCATGGCAGCGTTCTTTACG	$1.83 \pm 4.503 \times 10^{-11}$	40	6
Cu _A3	ATTTGACCATCGTCTCCGGCTCACGGAATTATCAGCAGCG	$8.95 \pm 2.5 \times 10^{-10}$	40	3
Cu _A4	TTCTTAGGGAAGTAATCACGGAAAACCGTCTCCGTTCTCA	$1.73 \pm 1.03 \times 10^{-10}$	40	1
Cu _A5	ACCCACCGTACTAGTGACGGATACAATGGCCGCCTTGTCG	$8.16 \pm 1.93 \times 10^{-8}$	40	1
Cu _A6	CCAGGCAAGAAGTAATCACGGAAAACCGTCTCCGTTCTCA	$8.01 \pm 0.11 \times 10^{-8}$	40	1
Cu _A7	AACGTTTAGCATTTAGAGTCATTTGCGATGATCCACGTTG	$1.10 \pm 0.02 \text{ X } 10^{-8}$	40	1
Cu _A8	CGGGGCACTGTTGAGGGTCTGGCACGGTCACAAGCTAG	$9.42 \pm 1.18 \times 10^{-7}$	38	1
Cu _A9	AAGAGGCTTGAAGACGCCATCATGATGAGGAACTTGATTA	$7.02 \pm 0.08 \text{ X } 10^{-8}$	40	1
Cu _A10	AGGACAATCAGTAACGGCGAGCCACATAACGTTCGAGTG	$1.09 \pm 1.77 \text{ X } 10^{-8}$	39	1
Cu_A11	CGTATTCCGAATATTGGGTCACTCATGTGTCAGTCGCCTG	$1.39 \pm 1.52 \times 10^{-8}$	40	1

Cu-A2	K _a (1/Ms)	K _d (1/s)	K _D (M)	RU
1 st Test	7.01E+07	1.33E-03	1.90E-11	305
2 nd Test	8.04E+07	2.67E-03	3.32E-11	305
3 rd Test	5.89E+05	6.10E-06	1.04E-11	119
4 th Test	7.01E+07	1.49E-03	2.13E-11	305
5 th Test	7.89E+05	6.10E-06	7.73E-12	119
Average	3.38E+07	2.62E-03	1.83E-11	213

Table S2. The binding affinity test of Cu-A2

Name	K _{D,} (M)	SD (M)	
Cu-A1 Nat	7.88E-11	±1.4176E-11	
Cu-A1 Mut	7.65E-10	±1.3429E-10	
Cu-A1 Del	3.97E-09	±1.6411E-9	
Name	K _{D,} (M)	SD (M)	
Cu-A2 Nat	1.83E-11	±1.3304E-11	
Cu-A2 Mut	8.34E-09	±1.5194E-9	
Cu-A2 Del	4.84E-08	±1.1768E-8	
Name	K _{D,} (M)	SD (M)	
Cu-A3 Nat	8.95E-10	±2.5202E-10	
Cu-A3 Mut	8.5E-11	±5.0082E-11	
Cu-A3 Del	1.69E-08	±1.1460E-8	
	L		
Name	K ₂ (M)	SD (M)	

Table S3. The binding affinity values of Cu-A1, Cu-A2, Cu-A3, and Cu-A4

Name	K _{D,} (M)	SD (M)	
Cu-A4 Nat	1.73E-10	±1.0279E-10	
Cu-A4 Mut	7.73E-11	±1.3405E-11].
Cu-A4 Del	1.92E-10	±2.1575E-10	