Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Phthalocyanine-cRGD Conjugate: Synthesis, Photophysical Properties and in

vitro Cell Study for Targeting Photodynamic Therapy

Liqiang Luan, Wenjuan Fang, Wei Liu,* Minggang Tian, Yuxing Ni, Xi Chen, Xiaoqiang Yu

Content

Figure S1. HPLC chromatogram of the phthalocyanine-peptide conjugate **6** (solvent A = H_2O and solvent B = DMF, gradient: solvent A from 50% to 0 in 25 minutes, flow rate 1 mL/min).

Figure S2. ¹H NMR sprctrum of **1** in CDCl₃

Figure S3. ¹³C NMR sprctrum of **1** in CDCl₃.

Figure S4. ¹H NMR sprctrum of **3** in CDCl₃ with a trace amount of pyridine-d₅.

Figure S5. ¹H NMR sprctrum of 4 in CDCl₃ with a trace amount of pyridine-d₅.

Figure S6. MALDI-TOF mass spectra of 3.

Figure S7. MALDI-TOF mass spectra of 4.

Figure S8. The measured HRMS (upper) and simulated (lower) mass spectra by Chemdraw of **6**. The insert gives a broad view of the HRMS spectra.

Figure S9. Electronic absorption spectra of 6 (solid) and 4 (dash) in DMF at concentration of ~0.5 μ M.

Figure S10. Fluorescence spectra of **6** (solid) and **4** (dash) in DMF excited at 610 nm. Both compounds were at concentration of ~ 0.5μ M.

Figure S11. Normalized electronic absorption (solid) and fluorescence (dash) spectra of **4** in DMF.

Figure S12. Normalized electronic absorption (solid) and fluorescence (dash) spectra of **6** in DMF.

Figure S13. Electronic absorption spectra of **4** at different concentration in DMF. The insert plots the Q band absorption at 670 nm versus the concentration of **4**.

Figure S14. Electronic absorption spectra of **6** (solid) and **4** (dash) in RPMI medium 1640 formulated with 0.1% of Cremophor EL (v/v). Both compounds were at concentration of 2 μ M.

Figure S15. Fluorescence spectra of **6** (solid) and **4** (dash) in RPMI medium 1640 formulated with 0.1% of Cremophor EL (v/v) excited at 610 nm. Both compounds were at concentration of 2 μ M.

Figure S16. Absorption change of 4 (2 μ M) and DPBF (40 μ M) in DMF upon exposure to red light ($\lambda > 610$ nm, fluence rate 0.2 mW/cm²). The insert shows the rates of photodegradation of DPBF with irradiation time.

Figure S17. Absorption change of 4 (4 μ M) and DPBF (80 μ M) in RPMI medium 1640 formulated with 0.1% of Cremophor EL (v/v) upon exposure to red light ($\lambda >$ 610 nm, fluence rate 0.2 mW/cm²). The insert shows the rates of photodegradation of DPBF with irradiation time.

Figure S18. Absorption change of **6** (2 μ M) and DPBF (40 μ M) in DMF upon exposure to red light ($\lambda > 610$ nm, fluence rate 0.2 mW/cm²). The insert shows the rates of photodegradation of DPBF with irradiation time.

Figure S1. HPLC chromatogram of the phthalocyanine-peptide conjugate **6** (solvent A = H_2O and solvent B = DMF, gradient: solvent A from 50% to 0 in 25 minutes, flow rate 1 mL/min).

In the following spectra, the residual solvent signals are marked with asterisks.

Figure S2. ¹H NMR sprctrum of **1** in CDCl₃

Figure S3. ¹³C NMR sprctrum of **1** in CDCl₃.

Figure S4. ¹H NMR sprctrum of **3** in CDCl₃ with a trace amount of pyridine-d₅.

Figure S5. ¹H NMR sprctrum of **4** in CDCl₃ with a trace amount of pyridine- d_5 (the compound was recrystalized from THF).

Figure S6. MALDI-TOF mass spectra of **3**.

Figure S7. MALDI-TOF mass spectra of 4.

Figure S8. The measured HRMS (upper) and simulated (lower) mass spectra by Chemdraw of **6**. The insert gives a broad view of the HRMS spectra.

Figure S9. Electronic absorption spectra of 6 (solid) and 4 (dash) in DMF at concentration of ~0.5 μ M.

Figure S10. Fluorescence spectra of **6** (solid) and **4** (dash) in DMF excited at 610 nm. Both compounds were at concentration of ~0.5 μ M.

Figure S11. Normalized electronic absorption (solid) and fluorescence (dash) spectra of **4** in DMF.

Figure S12. Normalized electronic absorption (solid) and fluorescence (dash) spectra of **6** in DMF.

Figure S13. Electronic absorption spectra of **4** at different concentration in DMF. The insert plots the Q band absorption at 670 nm versus the concentration of **4**.

Figure S14. Electronic absorption spectra of **6** (solid) and **4** (dash) in RPMI medium 1640 formulated with 0.1% of Cremophor EL (v/v). Both compounds were at concentration of 2 μ M.

Figure S15. Fluorescence spectra of **6** (solid) and **4** (dash) in RPMI medium 1640 formulated with 0.1% of Cremophor EL (v/v) excited at 610 nm. Both compounds were at concentration of 2 μ M.

Figure S16. Absorption change of 4 (2 μ M) and DPBF (40 μ M) in DMF upon exposure to red light ($\lambda > 610$ nm, fluence rate 0.2 mW/cm²). The insert shows the rates of photodegradation of DPBF with irradiation time.

Figure S17. Absorption change of 4 (4 μ M) and DPBF (80 μ M) in RPMI medium 1640 formulated with 0.1% of Cremophor EL (v/v) upon exposure to red light ($\lambda >$ 610 nm, fluence rate 0.2 mW/cm²). The insert shows the rates of photodegradation of DPBF with irradiation time.

Figure S18. Absorption change of **6** (2 μ M) and DPBF (40 μ M) in DMF upon exposure to red light ($\lambda > 610$ nm, fluence rate 0.2 mW/cm²). The insert shows the rates of photodegradation of DPBF with irradiation time.